DOI QR코드

DOI QR Code

Comparative analysis of various corrosive environmental conditions for NiTi rotary files

니켈티타늄 파일의 부식에 영향을 미치는 다양한 환경 조건 비교

  • Yum, Ji-Wan (Department of Conservative Dentistry, School of Dentistry Pusan National University) ;
  • Park, Jeong-Kil (Department of Conservative Dentistry, School of Dentistry Pusan National University) ;
  • Hur, Bock (Department of Conservative Dentistry, School of Dentistry Pusan National University) ;
  • Kim, Hyeon-Cheol (Department of Conservative Dentistry, School of Dentistry Pusan National University)
  • 염지완 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 박정길 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 허복 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 김현철 (부산대학교 치의학전문대학원 치과보존학교실)
  • Published : 2008.07.31

Abstract

The aim of the present study is to compare the corrosion tendency using two kinds of NiTi files in the various environmental conditions through the visual examination and electrochemical analysis. ProTaper Universal S2, 21 mm (Dentsply Maillefer, Ballaigues, Switzerland) and Hero 642, 0.06 tapers, size 25, 21 mm (Micromega, Besancon, France) rotary instruments were tested. The instruments were randomly divided into eighteen groups (n = 5) by the immersion temperature, the type of solution, the brand of NiTi rotary instrument and the presence of mechanical loading. Each file was examined at various magnifications using Scanning Electron Microscope (JEOL, Akishima, Tokyo, Japan) equipped with energy dispersive X-ray microanalysis (EDX). EDX was used to determine the components of the endodontic file alloy in corroded and noncorroded areas. The corrosion resistance of unused and used NiTi files after repeated uses in the human teeth was evaluated electrochemically by potentiodynamic polarization test using a potentiostat (Applied Corrosion Monitoring, Cark-in-Cartmel, UK). Solution temperature and chloride ion concentration may affect on passivity of NiTi files. Under the conditions of this in vitro study, the corrosion resistance is slightly increased after clinical use.

이 연구에서는 다양한 부식 환경하에서 니켈티타늄 파일에 대한 부식 경향을 전기화학적 검사와 시각적 검사를 이용해 비교 평가하였다. 각 45개의 21 mm ProTaper Universal 52와 21 mm #25/0.06의 Hero642 file을 기계적 하중 여부, 저장 용액(증류수 및 차아염소산나트륨), 저장 온도(22$^{\circ}C$ 및 55$^{\circ}C$), 파일 종류에 따라 18개의 그룹(n = 5)으로 나누었다. 40개의 발거 치아 근관을 성형한 후 18시간 동안 저장 용액에 조건에 따라 보관하였다. 부식 산물의 생성 여부나 변색 등을 관찰하고 주사전자현미경을 이용해 각 시편을 다양한 배율에서 관찰하였으며 에너지 분산형 X선 분광기로 성분 분석을 하였다 전기화학적분극시험을 통하여 새 파일과 근관 성형에 사용한 파일의 부식저항성을 검사하였다. 본 실험 조건하에서는 저장 용액의 종류와 보관 온도가 니켈 티타늄 파일의 부식에 영향을 주는 것으로 나타났다. 또한 이종 금속이 존재하는 경우 갈바닉 부식의 영향으로 인해니켈 티타늄 파일의 부식 경향이 증가할 수도 있음을 보였다.

Keywords

References

  1. Schilder H. Filling root canals in three dimensions. Dent Clin North Am 11:723-744, 1967
  2. Schilder H. Cleaning and shaping the root canal. Dent Clin North Am 18:269-296, 1974
  3. Haapasalo M, Endal U, Zandi H, Coil JM. Eradication of endodontic infection by instrumentation and irrigation solutions. Endodontic Topics 10:77-102, 2005 https://doi.org/10.1111/j.1601-1546.2005.00135.x
  4. Zehnder M. Root canal irrigants. J Endod 32:389-398, 2006 https://doi.org/10.1016/j.joen.2005.09.014
  5. Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of nitinol root canal files. J Endod 14:346-351, 1988 https://doi.org/10.1016/S0099-2399(88)80196-1
  6. Martin B, Zelada G, Varela P, Bahillo JG, Maga′n F, Ahn S, Rodriguez C. Factors influencing the fracture of nickel-titanium rotary instruments. Int Endod J 36:262-266, 2003 https://doi.org/10.1046/j.1365-2591.2003.00630.x
  7. Luebke NH, Brantley WA, Alapati SB, Mitchell JC, Lausten LL, Daehn GS. Bending fatigue study of nickel- titanium Gates Glidden drills. J Endod 31:523-525, 2005 https://doi.org/10.1097/01.don.0000148869.36136.a9
  8. Sotokawa T. An analysis of clinical breakage of root canal instruments. J Endod 14:75-82, 1988 https://doi.org/10.1016/S0099-2399(88)80005-0
  9. Kuhn G, Tavernier B, Jordan L. Influence of structure on nickel-titanium endodontic instruments failure. J Endod 27:516-520, 2001 https://doi.org/10.1097/00004770-200108000-00005
  10. Zinelis S, Margelos J. Assessment of fracture mechanism of endodontic files. In: Lambrianidis T ed. Risk Management in Root Canal Treatment, 1st edn. Thessaloniki, Greece: University Studio Press, pp. 239-243, 2001
  11. Sarkar NK, Redmond W, Schwaninger B, Goldberg AJ. The chloride corrosion of four orthodontic wires. J Oral Rehabil 10:121-128, 1983 https://doi.org/10.1111/j.1365-2842.1983.tb00106.x
  12. Oshida Y, Sachdeva RCI, Miyazaki S. Microanalytical characterization and surface modification of NiTi orthodontic arch wires. Biomed Mater Eng 2:51-69, 1992
  13. International ASM. ASM handbook, fatigue and fracture, vol.19. Materials Park, OH: ASM International; 1996
  14. Firstov GS, Vitchev RG, Kumar H, Blanpain B, Van Humbeeck J. Surface oxidation of NiTi shape memory alloy. Biomaterials 23:4863-4871, 2002 https://doi.org/10.1016/S0142-9612(02)00244-2
  15. Busslinger A, Sener B, Barbakow F. Effects of sodium hypochlorite on nickel-titanium lightspeed instruments. Int Endod J 31:290-294, 1998 https://doi.org/10.1046/j.1365-2591.1998.00149.x
  16. Haikel Y, Serfaty R, Wilson P, Speisser JM, Allemann C. Cutting efficiency of nickel-titanium endodontic instruments and the effect of sodium hypochlorite treatment. J Endod 24:736-739, 1998 https://doi.org/10.1016/S0099-2399(98)80164-7
  17. Haikel Y, Serfaty R, Wilson P, Speisser JM, Allemann C. Mechanical properties of nickel-titanium endodontic instruments and the effect of sodium hypochlorite treatment. J Endod 24:731-735, 1998 https://doi.org/10.1016/S0099-2399(98)80163-5
  18. Kim H, Johnson JW. Corrosion of stainless steel, nickel- titanium, coated nickel-titanium and titanium orthodontic wires. Angle Orthod 69:39-44, 1999
  19. Stokes OW, Fiore PM, Barss JT, Koerber A, Gilbert JL, Lautenschlager EP. Corrosion in stainless-steel and nickel-titanium files. J Endod 25:17-20, 1999 https://doi.org/10.1016/S0099-2399(99)80392-6
  20. O'Hoy PYZ, Messer HH, Palamara JE. The effect of cleaning procedures on fracture properties and corrosion of NiTi files. Int Endod J 36:724-732, 2003 https://doi.org/10.1046/j.1365-2591.2003.00709.x
  21. Darabara M, Bourithis L, Zinelis S, Papadimitriou GD. Susceptibility to localized corrosion of stainless steel and NiTi endodontic instruments in irrigating solutions. Int Endod J 37:705-710, 2004 https://doi.org/10.1111/j.1365-2591.2004.00866.x
  22. Lee JK, Kim ES, Kang MW, Kum KY. The effect of surface defects on the cyclic fatigue fracture of HERO shaper Ni-Ti rotary files in a dynamic model: A fractographic analysis. J Kor Acad Cons Dent 32:130-136, 2007 https://doi.org/10.5395/JKACD.2007.32.2.130
  23. Huang HH. Effect of chemical composition on the corrosion behavior of Ni-Cr-Mo dental casting alloys. J Biomed Mater Res 60:458-465, 2002 https://doi.org/10.1002/jbm.10080
  24. Endo K, Sachdeva R, Araki Y, Ohno H. Effects of titanium nitride coatings on surface and corrosion characteristics of Ni-Ti alloy. Dent Mater J 13:228-239, 1994 https://doi.org/10.4012/dmj.13.228
  25. Montero-Ocampo C, Lopez H, Salinas Rodriguez A. Effect of compressive straining on corrosion resistance of a shape memory Ni-Ti alloy in Ringer's solution. J Biomed Mater Res 32:583-591, 1996 https://doi.org/10.1002/(SICI)1097-4636(199612)32:4<583::AID-JBM11>3.0.CO;2-F
  26. Wever DJ, Veldhuizen AG, de Vries J, Busscher HJ, Uges DR, van Horn JR. Electrochemical and surface characterization of a nickel-titanium alloy. Biomaterials 19:761-769, 1998 https://doi.org/10.1016/S0142-9612(97)00210-X
  27. Thierry B, Tabrizian M, Trepanier C, Savadogo O, Yahia L. Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy. J Biomed Mater Res 51:685-693, 2000 https://doi.org/10.1002/1097-4636(20000915)51:4<685::AID-JBM17>3.0.CO;2-S
  28. Trepanier C, Tabrizian M, Yahia LH, Bilodeau L, Piron DL. Effect of modification of oxide layer on NiTi stent corrosion resistance. J Biomed Mater Res 43:433-440, 1998 https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<433::AID-JBM11>3.0.CO;2-#
  29. Burstein GT, Liu C, Souto RM. The effect of temperature on the nucleation of corrosion pits on titanium in Ringer's physiological solution. Biomaterials 26:245-256, 2005 https://doi.org/10.1016/j.biomaterials.2004.02.023
  30. Sirtes G, Waltimo T, Schaetzle M, Zehnder M. The effects of temperature on sodium hypochlorite shortterm stability, pulp dissolution capacity, and antimicrobial efficacy. J Endod 31:669-671, 2005 https://doi.org/10.1097/01.don.0000153846.62144.d2
  31. Peters OA, Roehlike JO, Baumann MA. Effect of immersion in sodium hypochlorite on torque and fatigue resistance of nickel-titanium instruments. J Endod 33:589-593, 2007 https://doi.org/10.1016/j.joen.2007.01.007
  32. Rondelli G, Vicentini B. Evaluation by electrochemical tests of the passive film stability of equiatomic Ni-Ti alloy also in presence of stress-induced martensite. J Biomed Mater Res 51:47-54, 2000 https://doi.org/10.1002/(SICI)1097-4636(200007)51:1<47::AID-JBM7>3.0.CO;2-P
  33. Angelini E, Zucchi F, Caputo A. Degradation processes on metallic surfaces. In: Barbucci R, ed. Integrated Biomaterial Science. Dordrecht: Kluwer Academic - Plenum Publishers, pp. 308-323, 2002
  34. Iijima M, Endo K, Yuasa T, Ohno H, Hayashi K, Kakizaki M, Mizoguchi I. Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys. Angle Orthod 76:705-711, 2006