• Title/Summary/Keyword: 기계동력

Search Result 2,208, Processing Time 0.03 seconds

An Analysis on the Educational Needs for the Smart Farm: Focusing on SMEs in Jeon-nam Area (중소·중견기업의 스마트팜 교육 수요 분석: 전남지역을 중심으로)

  • Hwang, Doo-hee;Park, Geum-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.649-655
    • /
    • 2020
  • This study determined effective educational strategies by investigating and analyzing the related educational demands for SMEs (small and medium-sized enterprises) in the 4th Industrial Revolution based area of smart farms. In order to derive the approprate educational strategies, Importance-Performance Analysis (IPA) and Borich's Needs Assessment Model were conducted based on the smart farm technological field. As a result, the education demand survey showed high demand for production systems and intelligent farm machinery. In detail, Borich's analysis showed the need for pest prevention and diagnosis technology (8.03), network and analysis SW linkage technology (7.83), and intelligent farm worker-agricultural power system-electric energy hybrid technology (7.43). In contrast, smart plant factories (4.09), lighting technology for growth control (4.46) and structure construction technology (4.62) showed low demands. Based on this, the IPA portfolio shows that the network and analysis SW linkage technology and the CAN-based complex center are urgently needed. However, the technology that has already been developed, such as smart factory platform development, growth control lighting technology and structure construction technology, was oversized. Based on these results, it is possible to strategically suggest the customized training programs for industrial sectors of SMEs that reflect the needs for efficiently operating smart farms. This study also provides effective ways to operate the relevant training programs.

Structural analysis of flexible wing using linear equivalent model (선형 등가모델을 이용한 유연날개 구조해석)

  • Kim, Sung Joon;Kim, Dong Hyun;Lim, Joosup;Lee, Sang Wook;Kim, Tae-Uk;Kim, Seungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.699-705
    • /
    • 2015
  • Aircraft needs high lift-to-drag ratio and weight reduction of the structure for long endurance flight with a small power. Generally high aspect ratio wing is applied to HALE(High Altitude Long Endurance) aircraft. Also high modulus, and high strength CFRP(Carbon Fiber Reinforced Plastic) has been used in primary structures. and thin mylar(membrane material) film has been applied to skin of wing. As a result, wing is more flexible than the other structures. and the stiffness of thin mylar film has an affect on dynamic stability. In this study, the membrane characteristic of mylar film has been simulated using nonlinear gap elements. And equivalent modeling method using shell elements is presented using the nonlinear simulation result. The linear equivalent model has verified using the results of nonlinear membrane method. Proposed linear equivalent shell model has applied to mode analysis for estimate the effect of mylar mechanical properties on natural frequency.

Development of an Underwater Rope-cutter Device and Controller for Removal of Propeller and Shaft Foreign Material for Small Vessel (소형선박용 프로펠러 및 샤프트 이물질 제거를 위한 수중절단기 기구 설계 및 제어기 개발)

  • Lee, Hunseok;Oh, Jin-Seok;Choi, Sun-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.927-935
    • /
    • 2019
  • Screw-failure accidents in small ships frequently occur in coastal waters. In particular, vessels' propulsion systems are frequently coiled due to objects such as fish-nets and ropes that float on the sea. The failure of the ship's propulsion system can cause primary accidents such as ship operation delays and drifting due to loss of power; furthermore, the possibility of secondary accidents such as those involving operators in the underwater removal of rope stuck in a propeller. Ships that do not have the proper tools to solve these problems must be either lifted onto land to be repaired or divers must dive directly under the ship to solve the problem. Accordingly, some small vessels have been equipped with rope-cutter devices on the propeller shaft to prevent ship propeller system accidents in recent years; however, they are not being applied efficiently due to the cost and time of installation. To solve these problems, this study develops an underwater rope-cutter device and controller for the removal of propeller and shaft foreign material in small vessels. This device has simple structures that use the principle of a saw. Meteor gears and crank pins were used for the straight-line rotation of saw blades of the underwater rope-cutters to allow for long strokes. Furthermore, the underwater rope-cutting machines can be operated by being connected to the ship battery. The user, a non-professional, can ensure convenience and stability by applying reverse current prevention and a speed control circuit so that it can be used more conveniently and safely.

A Study on Efficient Utilization of Power-Tiller Engines (동력경운기(動力耕耘機) 기관(機関)의 효율적(效率的) 이용(利用)에 관한 연구(硏究))

  • Ryu, Kwan Hee;Park, Keum Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 1984
  • The engines mounted on power-tillers are used as power source in various kinds of works such as plowing, harrowing, transporting, spraying, water pumping and threshing, etc. But the engines have not been used effectively from a standpoint of fuel consumption because of lack of proper power transmission system and lack of understanding of fuel consumption characteristics of the engines. Therefore, this study was attempted to establish proper power transmission system between the power-tiller engines and various implements. In order to accomplish the above objective, firstly, power requirement and pulley sizes for various implements, which are driven by the power-tiller engines, were investigated to find out whether the power transmission system is proper. Secondly, partload variable engine-speed test was conducted for 3 different sizes of diesel engines to measure to specific fuel consumption. Thirdly, the present power transmission systems were analyzed in terms of specific fuel consumption, and proper power transmission systems were suggested for various implements. The results of this study are summarized as follows: 1. Power requirement for each fixed-type implement of power-tiller varied from 1.5 ps to 11 ps according to its type and operating conditions, but generally in the range of 2.5 ps to 7 ps. 2. Each power tiller and implement were equipped with only one size of pully with few exeptions. With the present power transmission systems, the engines can't be utilized effectively in terms of fuel economy. The pulley size of engine or implement should be diversified to provide the optimum engine speed for different implements. 3. For a diesel eninge with the rated power output of 6 ps, the optimum engine speed to minimize specific fuel consumption was 2200 rpm for the power reguirement in the range of 6 ps or more, 1700 rpm in the range of 4 to 6 ps, and 1200 rpm in the range of 4 ps or less. 4. For a diesel engine with the rated power output of 8 ps, the optimum engine speed was 2200 rpm for the power requirement in the range of 7 ps or more, 1700 rpm in the range of 4.8 to 7 ps, and 1200 rpm in the range of 4.8 ps or less. 5. For a diesel engine with the rated power output of 10 ps, the optimum engine speed was 2200 rpm for the power requirement in the range of 8.4 ps or more, 1700 rpm in the range of 5.4 ps to 8.4 ps, and 1200 rpm in thr range of 5.4 ps or less. 6. Provided the existing implements are dirven by 8 ps diesel engines, the optimum size of engine pulley should be larger than 120mm for the works of requiring less than 4 ps and 90-110mm for the works requiring 4.5-6.5 ps in order to minimize fuel consumption.

  • PDF

A study on the standard of effective fire facilities for the Atrium (아트리움 공간의 효과적인 방화설비 기준연구)

  • Choi, Don-Mook;Kim, Jae-Woon;Min, Se-Hong
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.6 no.1
    • /
    • pp.49-66
    • /
    • 2005
  • The purpose of this study is to present reference data to be considered in designing fur the fire safety of atrium buildings. This study deals with the characteristics of atrium buildings in the fire safety aspect, analysis of fire examples and foreign fire codes of atrium space. And con-crete factors to be consigning fur the fire facilities of atrium buildings are presented. Recently many atrium spaces have been built in Korea. They provide new experience of space with resident and pedestrians. However, because of the lack of knowledge in design principle and disaster prevention, large loss of lives is expected in an emergency situation. cion. Therefore safety ensuring from the case is urgently needed. The following is the summary on the standard of effective fire facilities for the atrium. 1. The smoke control. inside atrium must use the machine ventilation in the atrium. 2. It is desirable to divide the section between atrium and nearby living room by anti-smoke screen in order to prevent damage by smoke when fire break out. 3. It is desirable to instill an excellent fire detector like infrared light detector as a replacement of old one. 4. It is desirable to transfer from closed operating sprinkler to fire-cycle sprinkler equipment or ablative sprinkler when the height is lower than 20m.

  • PDF

Prediction of Optimal Catenary Tension by Dynamic Characteristic Measurement and Dynamic Analysis of Pantograph in High-Speed Train (고속열차 팬터그래프 동특성 측정 및 동역학 해석을 통한 최적 전차선 장력 예측)

  • Oh, Hyuck Keun;Yoo, Geun-Jun;Park, Tae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.350-356
    • /
    • 2018
  • The contact force, which is the dynamic interaction between the pantograph and the catenary, is an important indicator for evaluating the current collecting quality, which is a stable power supply characteristic to the vehicle. In this study, dynamic contact force characteristics of pantograph of HEMU-430X vehicle, which is a power-distributed high-speed train test vehicle, were analyzed according to the catenary tension and compared with the analytical results using the pantograph-catenary interaction model. As a result of comparing the test results with the analytical results, it was confirmed that the average contact force and the standard deviation of the contact force, which are the main dynamic contact force characteristics, coincide relatively well. Using the analytical model, the relationship between the catenary tension and the contact force is presented according to the vehicle speed, and the optimal catenary tension for each operation speed is presented and compared with the international standard. As a result, it was found that the results obtained from the analysis are comparable to those recommended by international standards.

Experimental study on heating performance characteristics of electric heat pump system using stack coolant in a fuel cell electric vehicle (연료전지 스택 폐열 활용 전동식 히트펌프 시스템 난방 성능 특성 연구)

  • Lee, Ho-Seong;Kim, Jung-Il;Won, Hun-Joo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.924-930
    • /
    • 2018
  • The objective of this study was to investigate heating performance characteristics of electric heat pump system in a fuel cell electric vehicle (FCEV). In order to analyze heating performance characteristics of electric heat pump system with plate-type heat exchanger using stack coolant to evaporate the refrigerant, R-134a, each component was installed and tested under various operating conditions, such as air inlet temperature of inner condenser and compressor speed. When the air inlet temperature of inner condenser was varied from $0.0^{\circ}C$ to $-20.0^{\circ}C$, heating capacity was not quite different due to similar temperature gap between inlet and outlet of inner condenser with electric-driven expansion valve (EEV). However, COP increased until certain EEV opening, especially under 45.0%, because of decreasing power consumption. According to the compressor speed variation from 2,000 to 4,000 RPM, heating capacity and COP were found to have opposite trend. In the future works, stack coolant conditions as the heat source for tested heat pump system were analyzed with respect to heating performance, such as heating capacity and COP.

Salinity and water level measuring device using fixed type buoyancy (고정식 부력을 이용한 염도 및 수위 측정 방식에 대한 연구)

  • Yang, Seung-Young;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • To make an automated system for a salt field, it is necessary to measure the salinity and water level of the evaporation site. In this paper, a method to simultaneously measure the salinity and water level by measuring the buoyancy forces of two fixed buoyancy bodies is proposed. The proposed measurement method measures the buoyancy of the main part and reference part when the measuring device is immersed in the salty water, and simultaneously measures the salinity and water level through the sum and difference of the two buoyancy forces. Since there is no mechanical movement in the measurement of buoyancy, measurement errors and maintenance needs can be reduced in the mudy environment of salt field. By applying the proposed method, we developed a system that can simultaneously measure salinity and water level remotely at the evaporation site of a salt field. Through a measurement experiment using a reference salty water having various levels of salinity, the results of a salinity error of 0% and a water level error of 2mm were obtained, and the effectiveness of the proposed salinity and water level measuring device was verified. When an automated system is constructed using the developed salinity and water level measuring device, labor reduction, work environment improvement, and productivity improvement are expected.

The Transformation of Norms and Social Problems: Focusing on the COVID-19 Pandemic (규범의 전환과 사회문제: 코로나를 중심으로)

  • Lee, Jangju
    • Korean Journal of Culture and Social Issue
    • /
    • v.28 no.3
    • /
    • pp.513-527
    • /
    • 2022
  • This study was conducted to examining the socio-cultural impact of the COVID-19 pandemic that swept the world around 2020, and the transformation of norms and social problems due to COVID-19. For this, the characteristics of changes in the socio-cultural norms of the 14th century European Black Death, a representative example of the pandemic, were derived, and based on this, the COVID-19 pandemic was analyzed. The Black Death served as an opportunity to change social norms based on the existing religious authority and the power of the feudal system to the Enlightenment. The population declination and labor shortage also promoted commercialization and mechanization. Printing, which spread during this period, led to the popularization of knowledge, which raised the level of thinking and led to epochal scientific development. This became the foundation of the Industrial Revolution. Like the recent Black Death, COVID-19 has triggered changes in social norms. The technological environment of metaverse, a mixture of virtual and reality, has changed the norm of a consistent identity into free and open identities exerting various potentials through alternate characters. In addition, meme, which are about people being friendly to those with the same worldview as him on the metaverse, weakened the sense of isolation in non-face-to-face situations. Artificial intelligence (AI), which developed during the COVID-19 pandemic, has entered the stage of being used for creative activities beyond the function of assisting humans. Discussions were held on what new social problems would be created by the social norms changed due to the COVID-19 pandemic.

Model-based Design and Verification of High-lift Control System Using a Performance Analysis Model (성능해석 모델을 활용한 고양력 제어시스템의 모델기반 설계 및 검증)

  • Cho, Hyunjun;Kim, Taeju;Kim, Eunsoo;Kim, Sangbeom;Lee, Joonwon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.49-62
    • /
    • 2022
  • The purpose of this paper was to present a model analysis-based design process and verification results for the high-lift control system of aircraft. For this, we used Matlab/Simulink, one of the most widely-used physical modeling tools. The high-lift control system can be divided into three domains. (i.e., Electronic control domain, Hydraulic actuation domain, and Mechanical power transmission domain) Based on this division, we modeled each of the major domains and sub-components, and integrated them to complete the complicated system model. During the development process, each model block was tuned by referring to the results of pre-test and parts acceptance tests. As a result, the entire performance model and the developed system were completely verified, through unit components and system integrated performance tests. Finally, we summarize the process and results applied to the design process of high-lift control system and present future work.