• Title/Summary/Keyword: 급냉주조

Search Result 28, Processing Time 0.019 seconds

Mechanical Properties of Rapidly Solidified Mg-Zn Base Alloys (급냉응고된 Mg-Zn계 합금의 기계적 성질)

  • Kim, Yeon-Wook
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.462-466
    • /
    • 1998
  • Interest in rapid solidification of magnesium alloys stems from the fact that conventional ingot metallurgy alloys exhibit poor strength, ductility, and corrosion resistance. Such properties can be improved by microstructural refinement via rapid solidification processing. Mg-5wt%Zn alloys have been produced as continuous strips by melt overflow technique and the strips were consolidated by hot extrusion. The yield stress, tensile strengh and ductility obtained in asextruded Mg-5wt%Zn alloy were ${\sigma}_{0.2}=152\;MPa$, ${\sigma}_{T.S{\cdot}}=263\;MPa$ and ${\varepsilon}=21.8%$. In order to evaluate the influence of additional elements on mechanical properties, Th and Zr were added in rapidly solidified Mg-5wt%Zn alloy. An 130% increase in yield stress of as-extruded Mg-5wt%Zn-3wt%Th-1wt%Zr alloy was attributed to grain refinement by rapid solidification and elemental addition.

  • PDF

Effects of Thermal Treatments on Microstructural Features and Magnetic Properties of Rapidly Quenched Fe-6.5%Si Strip (열처리에 따른 급냉 Fe-6.5%Si 스트립의 미세구조 및 자기특성 변화)

  • Sung, Jin-Kyung;Kim, Mun-Chul
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.397-407
    • /
    • 1995
  • The objectives of this study are first, to expand our understanding of relationship between magnetic properties and microstructural features such as grain size and texture, and second to reduce core loss of Fe-6.5%Si strip through optimizing heat treatment conditions. A rapid solidification technique, planar flow casting(PFC), was adopted to produce Fe-6.5%Si strips. The strips were heat treated under various conditions. The results show that heat treatment conditions can change not only grain size but also (200) texture formation on the strip surface. Variation in magnetic properties of Fe-6.5%Si strip is analyzed in terms of the change in grain size as well as (200) texture on the strip surface. The heat treatment conditions of $1100^{\circ}C$ over 2 hr or $1150^{\circ}C$ $1{\sim}2hr$ in $N_2+5%H_2$ appear to minimize core loss of Fe-6.5%Si strips.

  • PDF

A Study on the Structure and Strength of Rapidly Solidified HSLA Steels (급냉응고한 HSLA강의 조직과 강도에 의한 연구)

  • Nam, Tea-Woon
    • Journal of Korea Foundry Society
    • /
    • v.10 no.2
    • /
    • pp.162-170
    • /
    • 1990
  • The major effects of RSP sre 1) extension of solid solubilities, 2) formation of metastable phaeses, 3) microstructural refinement 4) segregationless. The main trust of this study was to investigate the effects of superimposing RSP on the structure and properties of HSLA steels. Powder was made by NGA (Nitrogen Gas Atomization) process, and consolidated by HIP. The high grain-coarsening resistance of NGA-HIP steels was attributed to a fine dispersion of oxide precipitates. The average grain size for the NGA-HIP steels was somewhat finer than that for the conventional HSLA steels, The impact properteis of NGA-HIP steels were improved over those of the conventional HSLA steels.

  • PDF

A Study on the Solidified Structures of Al-Pb Alloy Solidified by Rapid Cooling (급냉응고 시킨 Al-Pb 합금의 응고조직에 관한 연구)

  • Kim, Yong-Kil;Kim, Tong-Hoon
    • Journal of Korea Foundry Society
    • /
    • v.2 no.1
    • /
    • pp.12-18
    • /
    • 1982
  • The present investigation was made to abtain a fine distribution of Pb Particles in AL - Pb binary alloys , which have a broad miscibility gap and large specific difference, by means of rapid Cooling of the molten alloys. Al-2.4% Pb, Al-5.5wt% Pb and Al-8.0wt % Pb alloy were used. The rapid cooling operation was performed by free falling of homogeneous liquid Al-Ph alloys into the water-cooled copper mold, and thermal analysis was made. Microstructures were observed, and variations of size and number of Pb particles were analysicle analyzer. By the result of examination with the varing cooling rates 100 to $210^{\circ}C/sec$ fine distributions of Pb particles were obtained with high cooling rate. Under same cooling condition, the best rapid cooling effect was recognized in Al-5.5wt% Pb alloy.

  • PDF

A Study on the Fabrication of Metal Fiber by Rapid Solidification Process (급냉응고법에 의한 금속 섬유제조에 관한 연구)

  • Baik, Nam-Ik;Hur, Sung-Kang;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.9 no.5
    • /
    • pp.396-402
    • /
    • 1989
  • Metal fibers of Al and stainless steel were fabricated by the PDME method and the Taylor process. Tensile strength of metal fiber produced by both the PDME method and the Taylor process was much higher than that of conventionally solidified materials. Utilizing the PDME method, Al fiber with $100\;{\mu}m$ was fabricated under Ar gas atmosphere, and stainless steel fiber with $50\;{\mu}m$ was fabricated under 0.06 Torr vacuum. Continuous fiber of stainless steel was made by the Taylor process and the surface of this fiber was smother than that fabricated by the PDME method.

  • PDF

Age Hardening and Microstructure in Rapidly Solidified Mg-Al-Si-xCa Alloys (급냉응고된 Mg-Al-Si-xCa 합금의 시효경화 및 미세조직)

  • Kim, Wan-Chul;Park, Ji-Ha;You, Bong-Sun;Park, Won-Wook
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.433-439
    • /
    • 1999
  • Rapidly solidified Mg-Al-Si base alloys containing Ca were obtained by melt spinning. The melt-spun ribbons were aged isochronally or isothermally to investigate age hardening phenomena and microstructural change according to the alloy composition. Age hardening occurred after aging at $200^{\circ}C$ for 1h mainly due to the precipitation of $Al_2Ca$ and $Mg_2Ca$, which have coherent interfaces with the matrix. With the increase of Ca content, the hardness values of the alloy ribbons were increased. Among the alloys, Mg-10Al-2 Si-3Ca alloy showed a good thermal stability at elevated temperature.

  • PDF

A Study on the Precipitates in Rapidly Solidified Al-(Fe, Ce) Alloys by Analysis of X-Ray Diffraction (급냉응고된 Al-(Fe, Ce) 합금에서 형성되는 석출상의 X-선적연구)

  • Park, Ik-Min;Lee, Kyu-Han;Choe, Jeong-Cheol;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.446-452
    • /
    • 1988
  • To obtain detailed information on the metastable and the equilibrium phases in rapidly solidified Al-(Fe,Ce) alloys, analysis of X-ray diffraction pattern has been carried out. It has been found that the metastable phase formed in Al-Fe alloys including up to 6wt%Fe is $Al_6Fe$ and the equilibrium phase is $Al_3Fe$. Any X-ray diffraction peak corresponding to the equilibrium phase $Al_{13}Fe_4$ has not been observed during aging. In Al-4wt%Fe alloy, which is ribbon shape with thickness less than $70\;{\mu}m$, aged at $400^{\circ}C$ for 1h after rapid solidification, unidentified phase has been found. In Al-4wt%Ce alloy, only X-ray diffraction peak corresponding to the equilibrium phase, $Al_4Ce$ has been observed. It has been found that the metastable phase Formed in Al-Fe-Ce alloys including up to 6wt% Fe and 4wt% Ce is $Al_6Fe$ and the equilibrium phases are $Al_3Fe$ and $Al_{10}CeFe_2$.

  • PDF

Microstructural Control of Mg-Zn Alloys by Rapid Solidification and Elemental Addition (급냉응고와 원소첨가에 의한 Mg-Zn합금의 미세조직 제어)

  • Kim, Yeon-Wook;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.283-288
    • /
    • 1998
  • Interest in rapid solidification of magnesium alloys stems from the fact that conventional ingot metallurgy alloys exhibit poor strength, ductility, and corrosion resistance. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-Zn alloys have been produced as continuous strips by melt overflow technique. In order to evaluate the influence of additional elements on the grain refinement and mechanical properties, Th and Zr were added in rapidly solidified Mg-5wt%Zn alloy. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate and the additional elements. The tremendous increase in hardness of Mg-Zn base alloys was mainly due to the refinement of the grain structure by the effect of rapid solidification and alloying elements. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification processing of magnesium alloys emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

Grain Refinement of Mg-5wt%Zn Alloy by Rapid Solidification Process (급냉응고에 의한 Mg-5wt%Zn 합금의 결정립 미세화)

  • Kim, Yeon-Wook;Lee, Eun-Jong;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.302-308
    • /
    • 1997
  • In spite of the fact that magnesium has low density and good machinability, its applications are restricted as a structural engineering material because of the poor strength, ductility, and corrosion resistance of the conventional ingot metallurgy alloys. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-5wt%Zn alloys have been produced as continuous strips by the melt overflow technique. In order to evaluate the influence of the cooling rate on the grain refinement and mechanical properties, seven different thickness strips were produced by means of controlling the speed of the cooling wheel. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate. The tremendous increase in hardness of Mg-Zn alloy was mainly due to the refinement of the grain structure by the effect of rapid solidification. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification process emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

Shape Memory Characteristics and Mechanical Properties of Rapidly Solidified $Ti_{50}Ni_{20}Cu_{30}$ Alloy Strips (급냉응고된 $Ti_{50}Ni_{20}Cu_{30}$ 합금 스트립의 형상기억특성과 기계적특성)

  • Kim, Yoen-Wook
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.187-191
    • /
    • 2009
  • Microstructures and shape memory characteristics of $Ti_{50}Ni_{20}Cu_{30}$ alloy strips fabricated by arc melt overflow have been investigated by means of XRD, optical microscopy and DSC. The microstructure of as-cast strips exhibited columnar grains normal to the strip surface. X-ray diffraction analysis showed that one-step martensitic transformation of B2-B19 occurred in the alloy strips. According to the DSC analysis, it was known that the martensitic transformation temperature ($M_s$) of B2 $\rightarrow$ B19 in $Ti_{50}Ni_{20}Cu_{30}$ strip is $57^{\circ}C$. During thermal cyclic deformation with the applied stress of 60 MPa, transformation hysteresis and elongation associated with the B2-B19 transformation were observed to be $3.7^{\circ}C$ and 1.6%, respectively. The as-cast strip of $Ti_{50}Ni_{20}Cu_{30}$ alloy also showed a superelasticity and its stress hysteresis was as small as 14 MPa. These mechanical properties and shape memory characteristics of the alloy strips were ascribed to B2-B19 transformation and the controlled microstructures produced by rapid solidification of the arc melt overflow process.