• Title/Summary/Keyword: 금형재료

Search Result 283, Processing Time 0.029 seconds

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

Development of embedded type antenna structure with NFC and WPC complex function (NFC 와 WPC 복합기능의 삽입형 안테나 복합체 개발)

  • Park, Rog-gook;Lee, Deok-soo;Jang, Jeong-sun
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.59-68
    • /
    • 2018
  • The objective of this study is to develop an embedded antenna structure with NFC and WPC composite functions. By selecting stable materials, the optimal component ratio of the polymer sheet was determined. The low cost embedded winding method compared to the existing FPCB was devised. During the winding process, characterization and process technology were developed. We also fabricated a ferrite mold to process the WPC grooves and developed the process technology for optimizing the WPC antenna. The following conclusions were obtained. (1) Optimum composition ratio was derived as Fe 87.5%, Si 7%, Al 5.5% and selected as the final material. (2) Optimal sheet conditions were derived from the experimental evaluation method and the experimental design method through the combination test of the optimized sheet and the conventional mass production FPCB. (3) According to coil diameter and inner diameter, Q value fluctuation, resistance value and efficiency fluctuation are obtained. Therefore, the most suitable coil condition is selected and Rx matching is performed. (4) The EMV load modulation test and the cognitive distance test of the polymer sheet and the ferrite sheet showed that the recognition distance of the polymer sheet at 1k and 4K was 32-33 mm and the recognition distance of the ferrite sheet at the same condition was 30-31 mm.

Exo-Skeletal Flexible Structure for Communal Touch Device (공용 터치 장치를 위한 외골격 유연 구조)

  • Jeong, Jae-Yun;Lee, EunJi;Park, Hyeongryool;Chu, Won-Shik
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.219-225
    • /
    • 2020
  • Importance of touch equipment and smart learning increases and public institutions and educational facilities are applying smart devices to their daily environments. However, users of public smart devices are at risk of being exposed to the direct and indirect spread of infectious diseases. This study develops an exo-finger that wraps the fingertips of smart device users and is intended to have a disease prevention effect when used on public equipment. An exoskeletal body was fabricated by inserting a secondary material which is a mixture of the activating material, carbon black (CB) and a macromolecular polymer (elastomer) into a mold. This device was confirmed to have a touch function when the CB content was 0.030 wt% or higher, and the content of the elastomer was varied so that it could have a friction force similar to that when a person touches a smart device (a friction coefficient of 2.5). Through experiments, it was concluded that the CB content had little effect on the friction coefficient. As a result of testing the completed prototype on a smart device, it was proven that the developed exoskeletal device can be useful in situations where it is impossible to touch due to wearing protective gears, or when equipment such as gloves is used to prevent the spread of infectious diseases.

Evaluation of Harmless Crack Size of SCM822H Steel by Double Shot Peening (이중 쇼트 피닝에 의한 SCM822H 강의 무해화 균열 크기 평가)

  • Jin-Woo Choi;Seo-Hyun Yun;Yung-Kug Kwon;Gum-Hwa Lee;Ki-Woo, Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1011-1017
    • /
    • 2023
  • In this study, the harmless crack size (ahml) by double shot peening (DSP) using shot balls with different diameters was evaluated on carburized, quenched-tempered SCM822H steel. The minimum crack size (aNDI) detectable by non-destructive inspection was also evaluated. The relationship between the crack size (a25,50) that reduces the fatigue limit by 25% and 50% and ahml was evaluated. The residual stress of DSP was greater in SP(0.6+0.08) than SP(0.8+0.08) and appeared deeper in the depth direction. In addition, the hardness below the surface appeared larger. The fatigue limit of DSP increased 2.07 times and 1.95 times compared to non-SP. All ahml of the DSP specimen was determined at the depth (a). The compressive residual stress distribution affects ahml, and the ahml of SP(0.6+0.08), which has a large compressive residual stress and a high fatigue limit, appeared large. ahml of SP(0.6+0.08) introduced deeper than the residual stress of SP(0.8+0.08) is larger in the range of As=1.0-0.3. Since the residual stress in the thickness direction has a greater effect on ahml than the residual stress at the surface, it is necessary to introduce it more deeply. The relation of ahml, a25,50, and aNDI were evaluated in the point for safety and reliability.

A Study on the Fitness of Adjustable Dental Impression Trays on the Chinese and Japanese (중국인과 일본인에 대한 가변형 치과 인상용 트레이의 적합성에 관한 연구)

  • Kang, Han-Joong;Lee, Jin-Han;Choi, Jong-In;Lee, In-Seop;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.175-184
    • /
    • 2008
  • Purpose: This study was designed to investigate the fitness of adjustable dental impression trays on the Chinese and the Japanese. Material and methods: Initial design of the adjustable dental trays was developed from the results of the dental arch size of Korean adults. This design was applied to the CAD-CAM process in order to create tray model samples. Simple silicon-base molds were then replicated based on these sample models. Polyurethane injection into the silicon- base molds completed the process of creating a large number of test products. 60 Chinese dental students (male:30, female:30) from the Shanghai Second Medical University and 60 Japanese alumni from the Kumamoto high school (male:30, female:30) were selected for taking irreversible hydrocolloid impression with these trays. The width and length of the impression body were measured on several measuring points by Vernier caliper. The results were analyzed statistically to evaluate the fitness of the trays. Results: 1. Uniform impression material thickness was achieved on the Chinese and Japanese by controlling the width of the tray using stops and beveled guides. The material thickness was generally within the range of 3 mm to 6 mm. 2. In the maxillary tray of the Chinese, average thickness of the impression material of the labial vestibule of the incisal teeth was 6.2 mm, the canine was 5.9 mm and the midpalatal part 10.5 mm and the posterior palatal part 9.7 mm. These were relatively large values. 3. In the mandibular tray of the Chinese, average length of the impression material of the lingual vestibule of first, second premolar contact point was 8.9 mm, the incisal teeth was 7.8 mm and thickness of the labial part of canine was 6.8 mm and premolars 7.0 mm. These were relatively large values. 4. In the maxillary tray of the Japanese, average thickness of the impression material of the labial vestibule of the incisal teeth was 7.4 mm, the canine was 7.7 mm and the midpalatal part 9.1 mm. These were relatively large values. 5. In the mandibular tray of the Japanese, average thickness of the impression material of the labial vestibule of first, second premolar contact point was 8.4 mm, and thickness of the labial part of canine was 7.4 mm. These were relatively large values. Conclusion: This adjustable dental tray shows good accuracy to Korean because it was designed by the analysis of the dental arch size of Korean adult model. With this result, it can be applied to Chinese and Japanese, we can take more easy and accurate dental impressions.

Optimum design of injection mold heater for uniform curing of LSR seal for waterproof connector (방수 커넥터용 LSR Seal의 균일 경화를 위한 사출 금형 히터의 최적 설계)

  • Song, Min-Jae;Cha, Baeg-Soon;Hong, Seok-Kwan;Ko, Young-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.310-315
    • /
    • 2017
  • Automotive waterproof connectors are highly functional parts that must be air-tight in a complex environment. In the LSR multi-cavity injection molding process for manufacturing waterproof connectors, it is important to maintain a uniform curing temperature between the cavities in order to obtain a quality product. For this purpose, we designed the capacity of the cartridge heater differently for each position, and then linked the heat transfer analysis and optimization module to obtain the optimal cartridge heater capacity. As a result of the optimization analysis, the temperature deviation between cavities was decreased from $13.1^{\circ}C$ to $8.1^{\circ}C$ compared with the case in which constant heater capacity was applied, so that the design criterion could be satisfied within a temperature deviation of $10^{\circ}C$ for uniform curing. This study suggests that this method can be applied efficiently to the design of a large area multi-cavity LSR mold heater.

Wear and corrosion coatings by MO-PACVD and dual plasma processes (MO-PACVD 및 복합 플라즈마 공정에 의한 내마모 내식성 코팅)

  • 김선규
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.3-4
    • /
    • 1999
  • 최근 산업이 고속도화, 고능률화 및 고정멸화의 추세로 발전함에 따라 우수한 내마모성, 인성, 고온 안정성 및 내구성을 갖는 공구 및 금형을 요구하게 되었다. 그러나 이와같은 성질들은 어떤 단일 재료에서는 얻을 수 없으며 적당한 기판공구나 금혈위에 내마모성 보호피막을 coating함으로 비교적 저렴하게 얻을 수 있다. 화학증착법으로 TiC, TiN등을 증착시킬때에는 $1000^{\circ}C$정도의 반응온도가 필요하며 이러한 증착온도는 모재가 초경합금일때는 문제가 안되나 강재일 경우 모재의 연화와 칫수변화의 문제를 야기시킨다. 최근에는 플라즈마를 사용하여 증착반응온도를 $550^{\circ}C$ 이하로 낮추는 플라즈마 화학 증착볍(PACVD)이 대두되고 있다. 그러나 이 방법어서 는 뚱착하려는 금속원소가 TiCl4의 형태로 공급되고 있으므로 생성된 층이 염소를 포함하고 있다. 이 층에 잔존하는 염소는 층의 기계적 성질을 저하시키고 층내의 stress를 유발시킨다. 또한 HCI개스의 생성으로 인하여 펌프 및 장비의 부식이 촉진 된다 이러한 결점을 극복하기 위하여 금속유기화합물 전구체(metallo-organic precursor)로 $TiCl_4$를 대체하고자 하는 연구가 활발하게 진행되고 있으며 본 연구실에서 이에 대하여 연구한 결과를 소개하고자 한다. diethylamino titanium을 전구체로 사용하여 $H_2,\;N_2,\;Ar$분위기하에서 pulsed d.c.를 사용하는 MO-PACVD에 의하여 $150~250^{\circ}C$의 저온에서 Al 2024 기판에 TiCN층 형 성을 하였다. 전구체 증발온도는 $74~78^{\circ}C$의 온도범위어야 하며 고경도의 코탱층은 54% duty, 14.2kHz, 450V의 조건에서 얻어졌으며 duty, 주파수, 전압이 증가함에 따라 경도는 저하되었다. 이때의 표면 morphology를 SEM으로 조사한바 dome structure가 크게 발달되었음을 알 수 있었다. 본 실험의 온도 범위내에서 얻은 TiCN 증착반응의 활성화에너지는 7.5Kcal/mol이었다. 증착된 TiCN층은 우수한 내마모섣을 나타내었으며 스크래치테스트 결과 17N의 엄계하중을 나타내었다. 본 연구에서 변화 시킨 duty, 주파수, 전압의 범위에서는 층의 밀착력은 크게 변화하지 않았다. titanium isopropoxide를 전구체로 사용하여 Hz, Nz 분위기하에서 d.c.를 사용하는 MO-PACVD에 의하여 Ti(NCO) 코팅층을 SKDll, SKD61, SKH9 공구강에 형성시키는 공정을 개발하였다. 최적의 Ti(NCO) 코탱층을 얻기 위해 유입전구체 부피%의 양은 향착압력의 5%를 넘지 않아야 되고 수소와 젤소 가스비가 1:1일 때 가장 높은 코팅층의 경도값을 나타내었다. 수소와 질소 가스비가 3:7일 때 TiFeCr(NCO)의 복화합물 코팅층이 형성됨을 알 수 있었고 500t의 증착온도에서 얻은 Ti(NCO) 코팅층이 높은 경도값과 좋은 내식성을 나타내었다. 또한 이와같은 Ti(NCO) 코팅공정과 본 실험실에서 개발한 확산층만 형성시키는 plsma nitriding 공정을 결합하여 복합코탱층을 형성하였는데 이 복합코팅층은 고경도와 우수한 내마모성, 내식성 뿐만 아니라 10)N 이상의 뛰어난 밀착력을 나타내었다. 현재 많이 사용되고 있는 PVD법은 step coverage가 좋지 않은 점과 cost intensive p process라는 단점이 있다. MO-PACVD법은 이러한 문제를 해결할 수 있는 방법으로서 앞으로 지속적인 도전이 요구되는 분야이다.

  • PDF

Thermal and Mechanical Properties of Epoxy Composition Containing Modified Halosite Nanotubes with Silane Coupling Agent (실란 커플링제를 이용하여 개질한 할로이사이트 나노튜브가 함유된 에폭시 조성물의 열적·기계적 물성)

  • Kim, TaeHee;Lim, Choong-Sun;Kim, Jin Chul;Seo, Bongkuk
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2017
  • Epoxy resins are widely used in various fields due to their excellent thermal, mechanical and chemical properties. In order to improve the mechanical properties of the epoxy composition after curing, various materials are mixed in the epoxy resin. Among the nano materials, CNT is the most widely used. However, CNT has limitations in terms of manufacturing process and manufacturing cost. Therefore, there is a growing interest in naturally occurring HNTs having similar structure to that of CNT. In this study, the thermal and mechanical properties of epoxy compositions containing HNTs treated with two types of silane compounds were investigated. The mechanical properties of silane-treated HNT were measured by using a universal testing machine. The differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) were used to measure thermal properties. As a result of the above tests, when the HNT was surface-treated with aminosilane, the tensile strength of the epoxy composition containing the HNT was higher than that of the epoxy composition containing epoxy silane treated HNT. The linear thermal expansion coefficients (CTE) obtained from the thermomechanical analysis of the two epoxy compositions for the comparison of dimensional stability showed that the HNT composition treated with aminosilane showed a lower value of CTE than that of epoxy composition including the pristine HNT.

A Study on the Development of Transfer Papers -Focused on Tile Design for Remodeling- (전사지 개발에 대한 연구 -리모델링을 위한 타일디자인을 중심으로-)

  • 모인순
    • Archives of design research
    • /
    • v.15 no.2
    • /
    • pp.213-222
    • /
    • 2002
  • A transfer paper, is needed in the third firing, is usually utilized for industrial ceramics in order to produce tablewares or promoting products. Products may have the same form, however; the price might be different by what kinds of design have transferred. We need to fully understand these methods in order to create high value and quality. Remodeling, the so-called second architecture, results from social Needs for renovation of structures and changing functions. Tile satisfying the need for a custom-made design which fits the features of a space. Most importantly, the remodeler must make an individual design ordered for the customer with an emphasis on economy and time efficiency. Tiles currently in the market are mass-produced using an automated system with a high-priced mold. It is difficult to find tiles of distinct design that are made in a small quantity. We need to develop a method for making various kinds of tile designs that would be marketed for the remodeling industry. In this study, after designing a certain wall with the tiffs in the space, 1 will talk about developing a method to make transfer paper to produce individual tiles for the space. 1 hope that the functional and aesthetic effect on remodeling will gain in popularity, and that we will foster a new demand for tiles in harmony with the other materials mentioned in this study.

  • PDF

Investigation of Molding Characteristics in Injection Compression Molding According to Molding Conditions through Birefringence (사출압축성형에서 복굴절을 통한 성형조건에 따른 성형특성 고찰)

  • Lee, Dan Bi;Nam, Yun Hyo;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.193-198
    • /
    • 2014
  • Lens and DVD require high quality of optical property. Conventional injection molded products contain high residual stress and this invokes birefringence since high cavity pressure and high temperature variation are involved in a molding process. Thus these products are often molded by injection compression molding in order to minimize the residual stress through reducing cavity pressure and uniform cavity pressure. In this study, molding parameters affecting molding quality such as property uniformity in injection compression molding were investigated through experiment. Molding quality deviations among the cavities in multi-cavity mold were also studied. Transparent resins, PC and PS were used in this study. Compression gap, compression speed, compression force, and compression delay time for processing variables in injection compression molding were applied in experiment. Compression force, compression delay time, and compression gap significantly affected the optical property of product. The degree of influence of process variable on the product quality was different in different resins. This implies that the optimal operational conditions in injection compression molding existed for each resin according to flow property.