• Title/Summary/Keyword: 금은광산

Search Result 34, Processing Time 0.018 seconds

Investigation on Soil Contamination and Its Remediation System in the Vicinity of Some Metalliferous Mines in Korea (국내 일부 금속광산 주변의 토양오염 조사와 광해방지시스템 연구)

  • 정명채;전효택;안주성
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.17-20
    • /
    • 1997
  • 이 연구에서는 국내에 산재되어 있는 금속광산들에 대한 토양환경오염을 조사하고 적절한 환경처리를 위한 기초자료를 제공하기 위하여 대표적인 연-아연광산, 동광산 및 금-은광산을 대상으로 As. Cd, Cu, Pb, Zn 등의 오염규모와 분산정도를 규명하고자 하였다. 연구대상지역으로 삼보 연-아연강산, 달성 동-텅스텐광산 그리고 구봉, 삼광, 금왕 금-은광산을 선정하여 이들 광산 주변에서 토양을 채취하여 화학분석을 실시하였다. 그리고 연속추출법을 이용하여 토양중에 존재하는 중금속의 존재형태를 규명하였으며 화학분해방법에 따른 중금속의 추출정도를 고찰하기 위하여 강산을 이용한 분해방법과 토양환경보전법에 제시된 방법을 비교하였다. 화학분석 결과, 삼보광산 주변의 상부토양 (0-15cm 심도)에서는 평균 11.8 $\mu\textrm{g}$/g Cd, 208 $\mu\textrm{g}$/g Cu, 2,700 $\mu\textrm{g}$/g Pb, 8,300 $\mu\textrm{g}$/g Zn이 검출되었으며 일부 농경지에서는 토양환경보전법의 우려기준을 초과하는 중금속이 검출되어 광산활동에 의한 토양오염이 심각함이 조사되었다. 달성광산 주변 토양에서도 다량의 중금속이 검출되었으며 (평균 4.4 $\mu\textrm{g}$/g Cd, 1,950 $\mu\textrm{g}$/g Cu, 1,030 $\mu\textrm{g}$/g Pb, 419 $\mu\textrm{g}$/g Zn) 특히 As (평균 2,500 $\mu\textrm{g}$/g)의 오염이 심각하였다. 그리고 대표적인 금은광산인 구봉, 삼광 및 금왕광산에서는 광미와 선광장 주변에서 다량의 중금속과 As가 검출되었다. 이 연구 결과, 이들 점오염원에 대한 오염정도가 심각하므로 이를 적절하게 처리할 수 있는 오염복구사업이 실시되어야할 것으로 판단된다.

  • PDF

Compositional Variations of Arsenopyrite from Gold-Silver Deposits in Korea (한국 금은광산에서 산출되는 유비철석의 조성변화)

  • Choi, Seon-Gyu;Choi, In-Sik
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.89-99
    • /
    • 1998
  • The gold-silver mineralizations in Korea are closely related to Jurassic Daebo igneous activity (121 and 183 Ma) and Cretaceous Bulgugsa igneous activity (60 and 110 Ma). A compilation and re-evaluation of chemical data in arsenopyrite suggest that the As contents vary, reflecting different genetic environments or mineral assemblages. The gold-silver vein deposits from various mineralized area were investigated using arsenopyrite geothermometer. Arsenopyrites from the Jurassic Au-dominant deposits are distinct by high As contents (29.68~33.46 atomic %) with narrow variations, equivalent to a temperature range of $370{\sim}450^{\circ}C$ and a sulfur fugacity of about $10^{18}-10^{-6}$ atm. On the contrary, arsenopyrites from the Cretaceous Au-Ag and Ag-dominant deposits show a wider range in atomic % As composition of 27.47-32.74. They may have formed at temperatures of $250{\sim}350^{\circ}C$ and about $f_{S_2}=10^{-12}-10^{-10}$ atm. The data of arsenopyrite geothermometer, electrum-sphalerite geothermometer, fluid inclusions, vein morphology and emplacement depth of igneous rocks indicate that the gold mineralizations of Group IIA occurred at temperatures between 300 and $500^{\circ}C$ at depth of several tens km or more (about 4-5 kbar), and the gold-silver deposits of Groups III, IV and V were formed at a temperature range of about $170{\sim}370^{\circ}C$ under the shallow environment (<1 kbar).

  • PDF

Heavy Metal Contamination around the Abandoned Au-Ag and Base Metal Mine Sites in Korea (국내 전형적 금은 및 비(base)금속 폐광산지역의 중금속 오염특성)

  • Chon Hyo-Taek;Ahn Joo Sung;Jung Myung Chae
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.101-111
    • /
    • 2005
  • The objectives of this study we to assess the extent and degree of environmental contamination and to draw general conclusions on the fate of toxic elements derived from mining activities in Korea. 인t abandoned mines with four base-metal mines and four Au-Ag mines were selected and the results of environmental surveys in those areas were discussed. In the base-metal mining areas, the Sambo Pb-Zn-barite, the Shinyemi Pb-Zn-Fe, the Geodo Cu-Fe and the Shiheung Cu-Pb-Zn mine, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials, tailings and slag. Furthermore, agricultural soils, stream sediments and stream water near the mines were severely contaminated by the metals mainly due to the continuing dispersion downstream and downslope from the sites, which was controlled by the feature of geography, prevailing wind directions and the distance from the mine. In e Au-Ag mining areas, the Kubong, the Samkwang, the Keumwang and the Kilkok mines, elevated levels of As, Cd, Cu, Pb and Zn were found in tailings and mine dump soils. These levels may have caused increased concentrations of those elements in stream sediments and waters due to direct dis-charge downstream from tailings and mine dumps. In the Au-Ag mines, As would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and mobility of these metals would be enhanced by the effect of oxidation. According to sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. As application of pollution index (PI), giving data on multi-element contamination in soils, over 1.0 value of the PI was found in soils sampled at and around the mining areas.

Electrical Responses on the Auriferous Mineralized Bone in Sambo Mine (삼보광산 금 광화대에 대한 전기탐사 반응)

  • You Youngjune;Yoo In-Kol;Kim Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.4
    • /
    • pp.217-224
    • /
    • 2004
  • Self-potential and electrical resistivity methods were conducted for locating the auriferous mineralized zone, called Jija Vein, of Sambo mine, Limsu-ri, Haeje-myeon, Muahn-gun, Jeollanam-do. The host rocks of the mineralization include gneiss, rhyolite and felsic dyke. Ore vein is mainly fissured-filling type and sulfide minerals, such as pyrite, are disseminated in country rock. By the electrical responses from SP and surface resistivity methods., the mineralized zone is supposed to extend about 360 m directed N5W with the width of 20 m to 30 m. From resistivity tomograms using inclined borehole to surface, the ore body shape is interpreted as the width of 20 m in depth 40 m to 50 m.

Mesozoic Granitoids and Associated Gold-Silver Mineralization in Korea (한국 중생대 화강암류와 이에 수반된 금-은광화작용)

  • 최선규;박상준;최상훈;신홍자
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.25-38
    • /
    • 2001
  • Contrasts in the style of the gold-silver mineralization in geologic and tectonic settings in Korea, together with radiometric age data, reflect the genetically different nature of hydrothermal activities, coinciding with the emplacement age and depth of Mesozoic magmatic activities. It represents a clear distinction between the plutonic settings of the Jurassic Daebo orogeny and the subvolcanic environments of the Cretaceous Bulgugsa igneous activities. During the Daebo igneous activities (about 200-130 Ma) coincident with orogenic time, gold mineralization took place between 197 and 127 Ma. The Jurassic deposits commonly show several characteristics: prominent association with pegmatites, low Ag/Au ratios in the ore-concentrating parts, massive vein morphology and a distinctively simple mineralogy including Fe-rich sphalerite, galena, chalcopyrite, Au-rich eIectrum. pyrrhotite and/or pyrite. During the Bulgugsa igneous activities (120-60 Ma), the precious-metal deposits are generally characterized by such features as complex vein morphology, medium to high AgiAu ratios in the ore concentrates, and abundance of ore minerals including base-metal sulfides, Ag sulfides, native silver, Ag sulfosalts and Ag tellurides. Vein morphology, mineralogical, fluid inclusion and stable isotope results indicate the diverse genetic natures of hydrothermal systems. The Jurassic Au-dominant deposits were formed at the relatively high temperature (about 300 to 450$^{\circ}$C) and deep-crustal level (>3.0 kb) from the hydrothermal fluids containing more amounts of magmatic waters (3180; 5-10 %0). It can be explained by the dominant ore-depositing mechanisms as CO2 boiling and sulfidation, suggestive of hypo/mesothermal environments. In contrast, mineralization of the Cretaceous Au-Ag type (108-71 Ma) and Agdominant type (98-71 Ma) occurred at relatively low temperature (about 200 to 350$^{\circ}$C) and shallow-crustal level «1.0 kb) from the ore-fonning fluids containing more amounts of less-evolved meteoric waters (15180; -10-5%0). These characteristics of the Cretaceous precious-metal deposits can be attributed to the complexities in the ore-precipitating mechanisms (mixing, boiling, cooling), suggestive of epilmesothermal environments. Therefore, the differences of the emplacement depth between the Daebo and the Bulgugsa igneous activities directly influence the unique temporal and spatial association of the deposit type.

  • PDF

Prediction of the Gold-silver Deposits from Geochemical Maps - Applications to the Bayesian Geostatistics and Decision Tree Techniques (지화학자료를 이용한 금${\cdot}$은 광산의 배태 예상지역 추정-베이시안 지구통계학과 의사나무 결정기법의 활용)

  • Hwang, Sang-Gi;Lee, Pyeong-Koo
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.663-673
    • /
    • 2005
  • This study investigates the relationship between the geochemical maps and the gold-silver deposit locations. Geochemical maps of 21 elements, which are published by KIGAM, locations of gold-silver deposits, and 1:1,000,000 scale geological map of Korea are utilized far this investigation. Pixel size of the basic geochemical maps is 250m and these data are resampled in 1km spacing for the statistical analyses. Relationship between the mine location and the geochemical data are investigated using bayesian statistics and decision tree algorithms. For the bayesian statistics, each geochemical maps are reclassified by percentile divisions which divides the data by 5, 25, 50, 75, 95, and $100\%$ data groups. Number of mine locations in these divisions are counted and the probabilities are calculated. Posterior probabilities of each pixel are calculated using the probability of 21 geochemical maps and the geological map. A prediction map of the mining locations is made by plotting the posterior probability. The input parameters for the decision tree construction are 21 geochemical elements and lithology, and the output parameters are 5 types of mines (Ag/Au, Cu, Fe, Pb/Zn, W) and absence of the mine. The locations for the absence of the mine are selected by resampling the overall area by 1 km spacing and eliminating my resampled points, which is in 750m distance from mine locations. A prediction map of each mine area is produced by applying the decision tree to every pixels. The prediction by Bayesian method is slightly better than the decision tree. However both prediction maps show reasonable match with the input mine locations. We interpret that such match indicate the rules produced by both methods are reasonable and therefore the geochemical data has strong relations with the mine locations. This implies that the geochemical rules could be used as background values oi mine locations, therefore could be used for evaluation of mine contamination. Bayesian statistics indicated that the probability of Au/Ag deposit increases as CaO, Cu, MgO, MnO, Pb and Li increases, and Zr decreases.

Mineralogical and chemical characterization of arsenic solid phases in weath-ered mine tailings and their leaching potential (풍화광미내 고상 비소의 광물학적${\cdot}$화학적 특성 및 용출 가능성 평가)

  • 안주성;김주용;전철민;문희수
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.27-38
    • /
    • 2003
  • Arsenic contamination around Au-Ag mining areas occurs mainly from the oxidation of arsenopyrite which is frequently contained in mine tailings. In weathered tailings, oxidation of sulfide minerals typically results in the formation of abundant ferric (oxy)hydroxides or (oxy)hydroxysulfates near the tailings surface, and arsenic may be associated with these secondary precipitates. In this study, solid phases of arsenic in weathered tailings of some Au-Ag mines were investigated through the SEM/EDS and sequential extraction analyses. The stability of As solid phases and the leaching potential were assessed with the variation of pH and Eh conditions. Oxidation of sulfides in the tailings samples was indicated by depletion of S molar concentrations compared to As and heavy metals. Under XRD examinations, jarosite as an Fe-oxyhydroxysulfate was found in the tailings of Deokeum, Dongil and Dadeok, and scorodite as an As-bearing crystalline mineral was identified from Dadeok which has the highest concentration of As (4.36 wt.%). Beudantite-like phases and some Pb-arsenates were also found under SEM/EDS analysis, and most of As phases were associated with Fe-(oxy)hydroxides and (oxy)hydroxysulfates despite a few arsenopyrite from Samgwang and Gubong. Sequential extraction analysis also showed that As was present predominantly as coprecipitated with Fe hydroxides from Dongil, Dadeok and Myungbong (72∼99%), and as sulfides (58%) and Fe hydroxide-associated forms (40%) from Samgwang and Gubong. In the tailings leaching experiment, As was released with high amounts by the dissolution of As-bearing Fe(oxy)hydroxysulfates in the lowest pH (2.7) conditions of Deokeum, and by desorption under alkaline conditions of Samgwang and Gubong. Higher leaching rates of arsenite(+3) were found under acidic conditions, which pose a higher risk to water quality. Changes in pH and Eh conditions coupled with microbial processes could influence the stabilities of the As solid phases, and thus, time amendments or landfilling of weathered tailings may result in enhanced As mobilization.

TiO2-catalytic UV-LED Photo-oxidation of Cyanide Contained in Mine Wastewater (광산폐수 내 시안 제거를 위한 TiO2와 UV-LED를 이용한 광촉매 산화)

  • Kim, Seong Hee;Lee, Sang-Woo;Cho, Hyen Goo;Kim, Young-Ho;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.223-233
    • /
    • 2014
  • Cyanidation method has been used to extract high-purity gold and silver in mining industry. Such mining activities have used a large amount of cyanide, and the mine wastewater contained a high level of cyanide has brought about pollution of surrounding aqueous environments. This research was initiated to study $TiO_2$-catalytic UV-LED photo-oxidation to remove cyanide from the mine wastewater. UV lamp has been generally used as a light source in conventional photo-oxidation so far, but it shows numerous drawbacks. For this reason, this study focused on the evaluation of applicability of UV-LED as an alternative light source in cyanide photo-oxidation process. Three types of $TiO_2$ photo-catalyst were compared in terms of performance of photo-oxidation of cyanide, and the results show that Degussa P25 was the most efficient. In addition, four types of UV-LED were tested to compare their efficiencies of cyanide photo-oxidation, and their efficacy was increased in the order of 365 nm lamp-type > 365 nm can-type > 280 nm can-type > 420 nm lamp-type. Not only did this study demonstrate that UV-LED can be used in the photo-oxidation of cyanide as an alternative light source of UV lamp, but also confirmed that the performance of photo-oxidation was significantly influenced by the type of $TiO_2$ catalysts.