Mineralogical and chemical characterization of arsenic solid phases in weath-ered mine tailings and their leaching potential

풍화광미내 고상 비소의 광물학적${\cdot}$화학적 특성 및 용출 가능성 평가

  • 안주성 (연세대학교 지구시스템과학과) ;
  • 김주용 (광주과학기술원 환경공학과) ;
  • 전철민 (연세대학교 지구시스템과학과) ;
  • 문희수 (연세대학교 지구시스템과학과)
  • Published : 2003.02.01

Abstract

Arsenic contamination around Au-Ag mining areas occurs mainly from the oxidation of arsenopyrite which is frequently contained in mine tailings. In weathered tailings, oxidation of sulfide minerals typically results in the formation of abundant ferric (oxy)hydroxides or (oxy)hydroxysulfates near the tailings surface, and arsenic may be associated with these secondary precipitates. In this study, solid phases of arsenic in weathered tailings of some Au-Ag mines were investigated through the SEM/EDS and sequential extraction analyses. The stability of As solid phases and the leaching potential were assessed with the variation of pH and Eh conditions. Oxidation of sulfides in the tailings samples was indicated by depletion of S molar concentrations compared to As and heavy metals. Under XRD examinations, jarosite as an Fe-oxyhydroxysulfate was found in the tailings of Deokeum, Dongil and Dadeok, and scorodite as an As-bearing crystalline mineral was identified from Dadeok which has the highest concentration of As (4.36 wt.%). Beudantite-like phases and some Pb-arsenates were also found under SEM/EDS analysis, and most of As phases were associated with Fe-(oxy)hydroxides and (oxy)hydroxysulfates despite a few arsenopyrite from Samgwang and Gubong. Sequential extraction analysis also showed that As was present predominantly as coprecipitated with Fe hydroxides from Dongil, Dadeok and Myungbong (72∼99%), and as sulfides (58%) and Fe hydroxide-associated forms (40%) from Samgwang and Gubong. In the tailings leaching experiment, As was released with high amounts by the dissolution of As-bearing Fe(oxy)hydroxysulfates in the lowest pH (2.7) conditions of Deokeum, and by desorption under alkaline conditions of Samgwang and Gubong. Higher leaching rates of arsenite(+3) were found under acidic conditions, which pose a higher risk to water quality. Changes in pH and Eh conditions coupled with microbial processes could influence the stabilities of the As solid phases, and thus, time amendments or landfilling of weathered tailings may result in enhanced As mobilization.

금은광산의 광미에는 유비철석이 포함되어 있으며 이의 산화로 주변 지구화학적 환경에서 비소오염 양상이 주로 나타나고 있다. 풍화된 광미의 경우 황화광물의 산화과정으로 철 수산화물 및 수산화황산염이 풍부하게 생성되고 여기에 비소가 결합되어 있을 것으로 예상된다. 이 연구에서는 국내 일부 금은광산 지역의 풍화된 광미를 대상으로 SEW/EDS 분석과 연속추출분석을 실시하여 고상 비소의 광물학적, 화학적 특성을 파악하였다. 또한 pH/Eh 환경변화에 따른 고상 비소의 안정도와 용출 가능성을 평가하였다. 광미시료들은 총 황 몰농도와 비소 및 중금속원소들의 함량을 비교해 볼 때 풍화로 인해 황화광물의 산화가 많이 진행된 것으로 나타났다. XRD 분석에서 덕음, 동일, 다덕 광산 광미에서 철수산화황산염 광물로서 자로사이트가 나타났으며 비소의 총함량이 가장 높게 나타난(4.36%) 다덕광산 광미에서 결정질 비소 함유상으로 스코로다이트가 확인되었다. 이외 SEM/EDS 분석을 통해 보이단타이트와 유사한 조성을 가지는 상자 일부 Pb-비산염 형태도 구분되었으며 상대적으로 광미의 풍화정도가 낮은 삼광 및 구봉 지역에서는 유비철석이 인지되기도 하지만 광미내 비소는 주로 철수산화물 및 수산화황산염에 결합된 것으로 나타났다. 화학적 형태 분석에서도 동일, 다덕, 명봉 광산 광미에서 철수산화물과 공침전된 형태가 72∼99%로 나타났으며 삼광 및 구봉에서는 황화물 형태가 58%, 철수산화물 결합형태가 40% 내외로 나타나 이를 뒷받침한다. 광미에 대한 비소 용출실험에서 덕음 광미가 가장 낮은 pH(2.7)를 의이며 직접적인 철수산화황산염의 용해반응으로 비소가 용출되며 삼광 및 구봉에서는 알칼리성 환경(8.1-8.5)에서 탈착반응으로 상대적으로 많은 양의 비소가 용출될 수 있음을 보여주었다. 또한 산성환경에서 용존 비소의 +3가 비율이 높게 차지하여 환경적 영향이 크게 나타날 수 있다. 이와 같은 풍화 광미에 대해 환경복구 기법의 적용으로 인한 pH/Eh 환경의 변화와 미생물의 작용이 비소를 함유하는 상의 안정도에 영향을 줄 수 있으며 비소의 용출 정도는 증가할 수 있다.

Keywords

References

  1. 자원환경지질 v.33 덕음광산 선광광미와 주변토양의 중금속에 대한 수평 · 수직적인 분산에 관한 연구 박영석;김진
  2. 한국자원공학회지 v.36 구봉 금은광산 주변지역의 비소 및 중금속에 의한 환경오염과 벼작물의 흡수특성 안주성;전효택;손아정;김경웅
  3. 자원환경지질 v.33 원소의 지구화학적 거동에 미치는 박테리아의 영향: 지구미생물학의 최근 연구 동향 이종운;전효택
  4. 자원환경지질 v.33 다덕광산 주변지역에서의 독성원소들의 환경오염 및 인체흡수도 이진수;Klinck, B.A.;Moore, Y;전효택
  5. 자원환경지질 v.34 토현광산 수계에 분포하는 토양과 퇴적물의 지구화학적 특성, 이차적 오염 및 중금속의 거동 이찬희;이현구;윤경무
  6. Environ. Sci Technol. v.36 Surface complexation if ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic Appelo, C.A.J.;Van Der Weiden, M.J.J.;Tournassat, C.;Charlet, L. https://doi.org/10.1021/es010130n
  7. Geochim. Cosmochim. Acta v.60 Schwertmannite and the chemical modeling of iron in acid sulfate waters Bigham, J.M.;Schwertman, U.;Traina, S.J.;Winland, R.L.;Wolf, M. https://doi.org/10.1016/0016-7037(96)00091-9
  8. Environ. Sci. Technol. v.36 Scavenging of As from acid mine drainage by schwertmannite and ferrihyrite: a comparison with synthetic analogues Carlson, L.;Bigham, J.M.;Schwertmann, U.;Kyek, A.;Wagner, F https://doi.org/10.1021/es0110271
  9. Environ. Sci. Technol. v.36 Reactivity of oxidized sulfidic mine tailings during lime treatment Catalan, L.J.;Buset, K.C.;Yin, G. https://doi.org/10.1021/es011150s
  10. Environ. Sci. Technol. v.33 Arsenic mobilization by the dissimilatory Fe(Ⅲ)-reducing bacterium Shewanella alga BrY Cummings, D.E.;Caccavo,F.Jr.;Fendorf, S.;Rosenzweig, R.F. https://doi.org/10.1021/es980541c
  11. Environ. Sci. Technol. v.33 Assessing the efficacy of lime amendment to geochemically stabilize mine tailings Davis, A.;Early, L.E.;Helgen, S. https://doi.org/10.1021/es9810078
  12. Am. Miner. v.70 The solobility and stability of scorodite, $FeAsO_4{\cdot}2H_2O$ Dove, P.M.;Rimstidt, J.D.
  13. Can. Miner. v.21 Beaverite-plum-bojarosite solid solution Jambor, J.L.;Dutrizac, J.E.
  14. Reviews in mineralogy and geochemistry v.40 Metal-sulfate salts from sulfide mineral oxidation Jambor, J.L.;Nordstrom, D.K.;Alpers, C.N. https://doi.org/10.2138/rmg.2000.40.6
  15. J. Environ. Qual. v.26 Arsenic transport in contaminsted mine tailings following liming Jones, C.A.;Inskeep, W.P.;Neuman, D.R. https://doi.org/10.2134/jeq1997.00472425002600020014x
  16. Soil. Sci. Soc. Am. J. v.64 Rates of microbiall mediated arsenate reduction and silubilization Jones, C.A.;Langner, H.W.;Anderson, K.;Mcdermolt, T.R.;Inskeep, W.P. https://doi.org/10.2136/sssaj2000.642600x
  17. Geosystem Engineering v.4 Environmental contamination and sequential extraction of trace elements from mine wastes around various metalliferous mines in Korea Jung, M.C.;Ahn, J.S.;Chon, H.T. https://doi.org/10.1080/12269328.2001.10541168
  18. Environ. Sci. Technol. v.35 Validation of an arsenic sequential extraction method for evaluating mobility in sediments Keon, N.E.;Swartz, C.H.;Brabander, D.J.;Harvey, C.;Hemond, H.F. https://doi.org/10.1021/es001511o
  19. Environ. Geochem. Health v.24 Assessment of As and heavy metal contamination in the vicinity of Duckum Au-Ag mine, Korea Kim, J.Y.;Kim, K.W.;Lee,J.U.;Lee, J.S.;Cook, J.
  20. Environ. Sci. Technol. v.34 Carbonate ion and arsenic dissolution by groundwater Kim, M.J.;Nriagu, J.;Haack, S. https://doi.org/10.1021/es990949p
  21. Am. Miner. v.73 Solubility and stability of scorodite, FeAsO_4{\cdot}2H_2O$: new data further discussin Kruse, E.;Ettel, V.A.
  22. Environ. Sci. Technol. v.34 Microbial reduction of arsenate in the presence of ferrihydrite Langner, H.W.;Inskeep, W.P. https://doi.org/10.1021/es991414z
  23. Methods of soil analysis. Part 3 Chemical methods Iron Loeppert, R.H.;Inskeep, W.P.
  24. Environ. Sci. Technol. v.35 Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings Macur, R.E.;Wheeler, J.T.;Mcdermott, T.R.;Inskeep, W.P. https://doi.org/10.1021/es0105461
  25. Environ. Sci. Technol. v.25 Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil Masscheleyn, P.H.;Delaune, R.D.;Patrick, W.H.Jr. https://doi.org/10.1021/es00020a008
  26. Environ. Sci. Technol. v.34 Influence of reduction reactions and solid-phase composition on porewater concentrations of arsenic McCreadie, H.;Blowes, D.W.;Ptacek, C.J.;Jambor, J.L. https://doi.org/10.1021/es991194p
  27. Hydrometallurgy v.41 Removal and fixation of arsenic in the form of ferric arsenates; three parallel experimental studies Papassiopi, N.;Vircikova, E.;Nenov, V.;Kontopoulos, A.;Molnar, L. https://doi.org/10.1016/0304-386X(95)00059-P
  28. Geochim. Cosmochim. Acta v.59 Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation Nesbitt, H.W.;Muir, I.J.;Pratt, A.R. https://doi.org/10.1016/0016-7037(95)00081-A
  29. Geochim. Cosmochim. Acta v.66 Stability and solubility of arsenopyrite, FeAsS, in crustal fluids Pokrovski, G.S.;Kara, S.;Roux, J. https://doi.org/10.1016/S0016-7037(02)00836-0
  30. Environ. Sci. Technol. v.32 Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes Raven, K.P.;Jain, A.;Loeppert, R.H. https://doi.org/10.1021/es970421p
  31. Soil. Sci. Soc. Am.J. v.62 Stability of arsenate minerals in soil under biotically generated reducing conditions Rochette, E.A.;Ki, G.C.;Fendorf, S.E. https://doi.org/10.2136/sssaj1998.03615995006200060008x
  32. Sci. Tot. Env. v.263 Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings Roussel, C.;Neel, X.;Bril, H. https://doi.org/10.1016/S0048-9697(00)00707-5
  33. Appl. Geochem. v.17 A review of the source, behaviour and distribution of arsenic in natural waters Smedley, P.L.;Kinniburgh, D.G. https://doi.org/10.1016/S0883-2927(02)00018-5
  34. Aquatic chemiatry(3rd ed.) Stumm, W.;Morgan, J.J.
  35. Anal. Chem. v.51 Sequential extraction procedure for the speciation of particulate trace metals Tessier, A.;Campell, P.G.C.;Bisson, M. https://doi.org/10.1021/ac50043a017
  36. Heavy metal in soils(2nd ed.) Methods of analysis for heavy metals in soils Ure, A.M;Alloway, B.J(ed.)
  37. Federal Register v.66 National primary drinking water regulations: Arsenic and clarifications to compliance and new source contaminants monitoring USEPA
  38. J. Environ. Monit. v.3 Speciation of arsenic using solid phase extraction cartidges Yalcin, S;Le, C.