• Title/Summary/Keyword: 금속열처리

Search Result 691, Processing Time 0.027 seconds

Electrochemical Characteristics of Cr Added Li4Ti5O12 Prepared by Sol-gel Method (졸-겔법으로 합성한 Cr 첨가 Li4Ti5O12의 전기화학적 특성)

  • Kim, Sun-Ah;Cho, Woo-Ram;Jeong, Koo-Hyun;Cho, Byung-Won;Na, Byung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2011
  • The electorchemical properties of $Li_4Ti_5O_{12}$ added with Cr was tested. The addition or substitution of atoms to $Li_4Ti_5O_{12}$ are expected to modify the crystal structure, and therefore to change the electrochemical performances of $Li_4Ti_5O_{12}$. After the spinel structure $Li_4Ti_{5-x}Cr_xO_{12}$ (x = 0~0.2) were obtained via sol-gel method, the gel was heated in a muffle furnace at $800{\sim}850^{\circ}C$ for 12 h in air. The physical properties of the samples were characterized by TG-DTA, XRD, SEM, FT-IR, and the electrochemical properties were tested with battery cycler at 0.01~2.0 V range. The $Li_4Ti_5O_{12}$ exhibited 169.9 mAh/g at 1C and capacity recovery was 97.5% of the initial capacity at 0.1C. $Li_4Ti_{4.9}Cr_{0.1}O_{12}$ (Cr 1% added) showed best performance of 193.8 mAh/g at 1C and the capacity recovery was increased to 98.8% of the initial capacity at 0.1C.

A study of apatite formation on NaOH treated Ti alloys with different Iron content (NaOH 처리한 Fe 첨가된 Ti alloys의 아파타이트 형성관찰)

  • Seung-Woo Lee;Yun-Jong Kim;Jae-Gyeoung Ruy;Taik-Nam Kim
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.23-32
    • /
    • 2004
  • Metals, ceramics and polymers are widely used as bioimplant materials. However, Ti and Ti alloys are widely used because of its high strength to weight ratio and good biocompatibility when implanted in the body. In this experiment, Ti alloys of Grade-4 (gr4), 0.2 wt % Fe, 0.5 wt % Fe and 2 wt % Fe were studied for their surface morphology and HAp forming ability on the metal substrate for different treatments. Intially, the samples were mechanically polished on silicone carbide paper (No.-2000). The polished samples were treated with 5M NaOH solution at $60^{\circ}C$ for 24 hours. The NaOH treated samples were washed gently with distill water and dried at $40^{\circ}C$ for 1 day. The dried samples were heated in air at $600^{\circ}C$ for 1 hour. The surface morphology of these samples were studied using SEM. The SEM studies showed network of pores in all samples. These samples were immersed in stimulated body fluids (SBF) kept at $36.5^{\circ}C$ for different periods over the length of 1 to 14 days. The apatite formation was confirmed on all Ti-alloys using EDAX.

  • PDF

Application in Conductive Filler by Low-Temperature Densification and Synthesis of Core-Shell Structure Powder for Prevention from Copper Oxidation (구리 산화 방지를 위한 Core-Shell 구조 입자 합성과 저온 치밀화를 통한 도전성 필러 응용)

  • Shim, Young Ho;Park, Seong-Dae;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.554-560
    • /
    • 2012
  • Recently, it has been increasing trend to use conductive materials as electronics and communication technology in electronics industry are developing. The noble metal such as Ag, Pt, Pd etc. are mostly used as conductive materials, To reduce production cost, alternative materials with similar characteristics of noble metals are needed. Copper has advantages, i.e its electronic properties are similar to noble metals and low cost than noble metal, but its use has been restricted because of oxidation in air. In this study, the tin film was coated on copper by electroless plating to protect copper from oxidation and to confirm the effects of temperature, pH, amount of $SnCl_2$, and feeding speed in plating conditions. Additionally, we apply $Cu_{core}Sn_{shell}$ powder as conductive filler with low-temperature densification and analysis by SEM, XRD, FIB and 4-Point Probe techniques. As result of the study, tin film was coated well on copper and was protected from oxidation. After low-temperature densification treatment, the meted tin made chemical interconnections with copper. Accordingly, conductivity was increased than before condition. We hope $Cu_{core}Sn_{shell}$ powder to replace noble metals and use in the electronic field.

Hardening mechanism associated with post-firing heat treatment of softening heat treated and then firing simulated Pd-Ag-Au alloy for bonding porcelain (연화 열처리 후 모의소성된 금속-세라믹용 Pd-Ag-Au계 합금의 후열처리에 의한 경화기전)

  • Kim, Sung-Min;Yu, Young-Jun;Cho, Mi-Hyang;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.42 no.2
    • /
    • pp.95-106
    • /
    • 2015
  • Hardening mechanism associated with post-firing heat treatment of softening heat treated and then firing simulated Pd-Ag-Au alloy for bonding porcelain was examined by observing the change in hardness, crystal structure and microstructure. By post-firing heat treatment of as-cast, solution treated and pre-firing heat treated specimens at $650^{\circ}C$ after casting, the hardness value increased within 10 minutes. Then, hardness consistently increased until 30 minutes, and gap of hardness value among the specimens was reduced. The increase in hardness after post-firing heat treatment was caused by grain interior precipitation in the matrix. The softening heat treatment did not affect the increase in hardness by post-firing heat treatment. The precipitated phase from the parent Pd-Ag-Au-rich ${\alpha}$ phase with face-centered cubic structure by post-firing heat treatment was $Pd_3$(Sn, In) phase with face-centered tetragonal structure, which has lattice parameters of $a_{200}=4.0907{\AA}$, $c_{002}=3.745{\AA}$. From above results, appropriate post-firing heat treatment in order to support the hardness of Pd-Ag-Au metal substructure was expected to bring positive effects to durability of the prosthesis.

Magnetic and Magneto-Optical Properties of $Mn_{1-x}Cr_xPt_3$ Ordered Alloy Films ($Mn_{1-x}Cr_xPt_3$ 박막의 자기 및 자기광학 특성)

  • 박문기;조재경
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.374-379
    • /
    • 1998
  • $Mn_1-xCr_xPt_3$ alloy films have been prepared by depositing (Mn, Cr)/Pt multilayers using a rf magnetron sputterer followed by heat treatment. Small and wide angle x-ray diffractometry, magnetic hysteresis loops and Kerr rotation angle spectra of the films have been measured and used to investigate structural, magnetic and magneto-optic properties of the films. The films had a crystal structure of ordered AuCu$_3$ type and the strong preferred orientation of a (111)plane parallel to the film surface. The saturation magnetization of the films was decreased with Cr content reaching almost zero near x=0.58 and then increased for further increasement of Cr content up to x=0.77 over that stayed almost constant. This indicated that Cr atoms were antiferromagnetically coupled with Mn atoms. The magnetic easy axis of MnPt$_3$(x=0) film was parallel to the film surface but those of the films with x$\geq$0.58 increased as Cr content increased reaching about 4 kOe at x=1(CrPt$_3$). The dependence of the Kerr rotation angle on the Cr content was similar to that of the saturation magnetization on the Cr content. The films with x=0.77 and x=1 showed the larger Kerr rotation angle at the wavelengths of near infrared compared to the magneto-optic recording medium, TbFeCo, currently being used.

  • PDF

Study on the Casting Method and Manufacturing Process of Bronze Bells Excavated from the Hoeamsa Temple Site (회암사지 금탁(琴鐸)의 주조방법과 가공기술 연구)

  • Lee, Jae Sung;Baek, Ji Hye;Jeon, Ik Hwan;Park, Jang Sik
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.102-121
    • /
    • 2010
  • Three bronze bells excavated from the Hoeamsa temple site were investigated for their microstructures and chemical compositions in an effort to understand the technology applied in fabrication, which may represent the related industry established in the early Joseon period. The result shows that the bells were cast from alloys of approximately 85% copper-8% tin-7% lead. The chemical analysis for ten trace elements shows that they were all kept below 0.3 weight %, suggesting that the alloys were made of relatively well-refined copper, tin and lead. The presence of sulfur and iron indicates that chalcopyrite or chalcocite may have been used in the smelting of copper. Evidence has been found that the bells were cast by pouring the liquid metal from the top of the sand molds that were set up in an upright position. No additional treatments, thermal or mechanical, other than a little grinding were applied upon the completion of casting. After the shaping process, a balancing plate was attached to the top of the bell using a steel connection ring. The connection assembly was then fixed to the main body by using molten bronze as a solder. The surface inscription was found carved using different techniques. The differences in the order of strokes and the calligraphic style indicate that the carving was carried out by more than one master. In the absence of documentary evidence on past bronze technology, the present bronze bells with known chronology, provenance and the main agent of production, prove to be a rare and valuable archaeological material for the understanding of the related technology in use in the early Joseon period.

Recent Progress in Waste Treatment Technology for Pyroprocessing at KAERI (파이로 공정폐기물 처리기술의 최근 KAERI 연구동향)

  • Park, Geun-Il;Jeon, Min Ku;Choi, Jung-Hoon;Lee, Ki-Rak;Han, Seung Youb;Kim, In Tae;Cho, Yung-Zun;Park, Hwan-Seo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.279-298
    • /
    • 2019
  • This study comprehensively addresses recent progress at KAERI in waste treatment technology to cope with waste produced by pyroprocessing, which is used to effectively manage spent fuel. The goal of pyroprocessing waste treatment is to reduce final waste volume, fabricate durable waste forms suitable for disposal, and ensure safe packaging and storage. KAERI employs grouping of fission products recovered from process streams and immobilizes them in separate waste forms, resulting in product recycling and waste volume minimization. Novel aspects of KAERI approach include high temperature treatment of spent oxide fuel for the fabrication of feed materials for the oxide reduction process, and fission product concentration or separation from LiCl or LiCl-KCl salt streams for salt recycling and higher fission-product loading in the final waste form. Based on laboratory-scale tests, an engineering-scale process test is in progress to obtain information on the performance of scale-up processes at KAERI.

A Study on the Resistve Switching Characteristic of Parallel Memristive Circuit of Lithium Ion Based Memristor and Capacitor (리튬 이온 기반 멤리스터 커패시터 병렬 구조의 저항변화 특성 연구)

  • Kang, Seung Hyun;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.41-45
    • /
    • 2021
  • In this study, in order to secure the high reliability of the memristor, we adopted a patterned lithium filament seed layer as the main agent for resistive switching (RS) characteristic on the 30 nm thick ZrO2 thin film at the device manufacturing stage. Lithium filament seed layer with a thickness of 5 nm and an area of 5 ㎛ × 5 ㎛ were formed on the ZrO2 thin film, and various electrode areas were applied to investigate the effect of capacitance on filament type memristive behavior in the parallel memristive circuit of memristor and capacitor. The RS characteristics were measured in the samples before and after 250℃ post-annealing for lithium metal diffusion. In the case of conductive filaments formed by thermal diffusion (post-annealed sample), it was not available to control the filament by applying voltage, and the other hand, the as-deposited sample showed the reversible RS characteristics by the formation and rupture of filaments. Finally, via the comparison of the RS characteristics according to the electrode area, it was confirmed that capacitance is an important factor for the formation and rupture of filaments.

Electrochemical Characteristics of LiNi0.5Mn1.5O4 Spinel as 5 V Class Cathode Material for Lithium Secondary Batteries (5V급 고전압 양극 LiNi0.5Mn1.5O4 Spinel의 제조와 전기화학적 특성에 관한 연구)

  • Jeon, Sang-Hoon;Oh, Si-Hyoung;Lee, Byung-Jo;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.172-176
    • /
    • 2005
  • Recently, many researches on the high-voltage 5 V class cathode material have focused on $LiNi_{0.5}Mn_{1.5}O_4$, where $Mn^{3+}$ in the existing $LiMn_2O_4 (Li[Mn^{3+}][Mn^{4+}]O_4)$ is replaced by $Ni^{2+}(Li[Ni^{2+}]_{0.5}[Mn^{4+}]_{1.5}O_4)$ in order to utilize $Ni^{2+}/Ni^{4+}$ redox reaction in the 5V region. The partial substitution of Mn in $LiMn_2O_4$ for other transition metal element, $LiM_yMn_{1-y}O_4$(M=Cr, Al, Ni, Fe, Co, Cu, Ga etc) is known as a good solution to overcome the problems associated with $LiMn_2O_4$ like the gradual capacity fading. In this study, we synthesized $LiNi_{0.5}Mn_{1.5}O_4$ through a mechanochemical process and investigated its morphological, crystallographic and electrochemical characteristics. The results showed that 4 V peaks had been found in the cyclic volammograms of the synthesized powders due to the existence of $Mn^{3+}$ from the incomplete substitution of $Ni^{2+}$ for $Mn^{3+}$ implying that the mechanochemical activation alone was not good enough to synthesize an exact stoichiometric compound of $LiNi_{0.5}Mn_{1.5}O_4$. The synthetic condition of mechanochemical process, such as type of starting materials, ball-mill and calcination condition was optimized for the best electrochemical performance.

Bottom electrode optimization for the applications of ferroelectric memory device (강유전체 기억소자 응용을 위한 하부전극 최적화 연구)

  • Jung, S.M.;Choi, Y.S.;Lim, D.G.;Park, Y.;Song, J.T.;Yi, J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.599-604
    • /
    • 1998
  • We have investigated Pt and $RuO_2$ as a bottom electrode for ferroelectric capacitor applications. The bottom electrodes were prepared by using an RF magnetron sputtering method. Some of the investigated parameters were a substrate temperature, gas flow rate, RF power for the film growth, and post annealing effect. The substrate temperature strongly influenced the surface morphology and resistivity of the bottom electrodes as well as the film crystallographic structure. XRD results on Pt films showed a mixed phase of (111) and (200) peak for the substrate temperature ranged from RT to $200^{\circ}C$, and a preferred (111) orientation for $300^{\circ}C$. From the XRD and AFM results, we recommend the substrate temperature of $300^{\circ}C$ and RF power 80W for the Pt bottom electrode growth. With the variation of an oxygen partial pressure from 0 to 50%, we learned that only Ru metal was grown with 0~5% of $O_2$ gas, mixed phase of Ru and $RuO_2$ for $O_ 2$ partial pressure between 10~40%, and a pure $RuO_2$ phase with $O_2$ partial pressure of 50%. This result indicates that a double layer of $RuO_2/Ru$ can be grown in a process with the modulation of gas flow rate. Double layer structure is expected to reduce the fatigue problem while keeping a low electrical resistivity. As post anneal temperature was increased from RT to $700^{\circ}C$, the resistivity of Pt and $RuO_2$ was decreased linearly. This paper presents the optimized process conditions of the bottom electrodes for memory device applications.

  • PDF