• Title/Summary/Keyword: 근적상

Search Result 531, Processing Time 0.03 seconds

Development of Nondestructive Sorting Method for Brown Bloody Eggs Using VIS/NIR Spectroscopy (가시광 및 근적외선 전투과 스펙트럼을 이용한 갈색 혈란 비파괴선별 방법 개발)

  • Lee, Hong-Seock;Kim, Dae-Yong;Kandpal, Lalit Mohan;Lee, Sang-Dae;Mo, Changyeun;Hong, Soon-Jung;Cho, Byoung-Kwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.31-37
    • /
    • 2014
  • The aim of this study was the non-destructive evaluation of bloody eggs using VIS/NIR spectroscopy. The bloody egg samples used to develop the sorting mode were produced by injecting chicken blood into the edges of egg yolks. Blood amounts of 0.1, 0.7, 0.04, and 0.01 mL were used for the bloody egg samples. The wavelength range for the VIS/NIR spectroscopy was 471 to 1154 nm, and the spectral resolution was 1.5nm. For the measurement system, the position of the light source was set to $30^{\circ}$, and the distance between the light source and samples was set to 100 mm. The minimum exposure time of the light source was set to 30 ms to ensure the fast sorting of bloody eggs and prevent heating damage of the egg samples. Partial least squares-discriminant analysis (PLS-DA) was used for the spectral data obtained from VIS/NIR spectroscopy. The classification accuracies of the sorting models developed with blood samples of 0.1, 0.07, 0.04, and 0.01 mL were 97.9%, 98.9%, 94.8%, and 86.45%, respectively. In this study, a novel nondestructive sorting technique was developed to detect bloody brown eggs using spectral data obtained from VIS/NIR spectroscopy.

Analysis of Carbonization Behavior of Hydrochar Produced by Hydrothermal Carbonization of Lignin and Development of a Prediction Model for Carbonization Degree Using Near-Infrared Spectroscopy (열수 탄화 공정을 거친 리그닌 하이드로차(hydrochar)의 탄화 거동 분석과 근적외선 분광법을 이용한 예측 모델 개발)

  • HWANG, Un Taek;BAE, Junsoo;LEE, Taekyeong;HWANG, Sung-Yun;KIM, Jong-Chan;PARK, Jinseok;CHOI, In-Gyu;KWAK, Hyo Won;HWANG, Sung-Wook;YEO, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.213-225
    • /
    • 2021
  • In this paper, we investigated the carbonization characteristics of lignin hydrochar prepared by hydrothermal carbonization and established a model for predicting the carbonization degree using near-infrared spectroscopy and partial least squares regression. The carbon content of the hydrothermally carbonized lignin at the temperature of 200 ℃ was higher by approximately 3 wt% than that of the untreated sample, and the carbon content tended to gradually increase as the heating time increased. Hydrothermal carbonization made lignin more carbon-intensive and more homogeneous by eliminating the microparticles. The discriminant and predictive models using near-infrared spectroscopy and partial least squares regression approppriately determined whether hydrothermal carbonization has been applied and predicted the carbon content of hydrothermal carbonized lignin with high accuracy. In this study, we confirmed that we can quickly and nondestructively predict the carbonization characteristics of lignin hydrochar manufactured by hydrothermal carbonization using a partial least squares regression model combined with near-infrared spectroscopy.

Analysis of Thermal Degradation Mechanism by Infrared High-speed Heating of CF-PEKK Composites in Hot Press Forming (핫프레스 공정 기반 CF-PEKK 복합재의 근적외선 고속가열에 의한 열적 열화 반응의 메커니즘 분석)

  • Lee, Kyo-Moon;Park, Soo-Jeong;Park, Ye-Rim;Park, Seong-Jae;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.93-97
    • /
    • 2022
  • The application of infrared heating in the hot press forming of the thermoplastic composites is conducive to productivity with high-speed heating. However, high energy, high forming temperature, and high-speed heating derived from infrared heating can cause material degradation and deteriorate properties such as re-melting performance. Therefore, this study was conducted to optimize the process conditions of the hot press forming suitable for carbon fiber reinforced polyetherketoneketone(CF/PEKK) composites that are actively researched and developed as high-performance aviation materials. Specifically, the degradation mechanisms and properties that may occur in infrared high-speed heating were evaluated through morphological and thermal characteristics analysis and mechanical performance tests. The degradation mechanism was analyzed through morphological investigation of the crystal structure of PEKK. As a result, the size of the spherulite decreased as the degradation progressed, and finally, the spherulite disappeared. In thermal characteristics, the melting temperature, crystallization temperature and heat of crystallization tend to decrease as degradation progresses, and the crystal structure disappeared under long-term exposure at 460℃. In addition, the low bonding strength was observed on the degraded surface, and the bonding surfaces of PEKK did not melt intermittently. In conclusion, it was confirmed that the CF/PEKK composite material degraded at 420℃ in the infrared high-speed heating. Furthermore, the spherulite experienced morphological changes and the re-melting properties of thermoplastic materials were degraded.