• Title/Summary/Keyword: 근육 작동기

Search Result 16, Processing Time 0.022 seconds

Computer Graphic Animation based on Forward Dynamic Simulation (Forward Dynamic 시뮬래이션을 이용한 컴퓨터 그래픽 애니매이션)

  • Park, Jihun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.48-60
    • /
    • 1996
  • This paper present a new technique for doing realistic computer animation. The method is based on forward dynamic simulation and nonlinear problem solving (parameter optimization) technique. Objects are modelled physically and simulated faithfully while satisfying kinematic and geometric constraints. This forward dynamic simulation gives us very realistic motions especially for non-voluntary motions. Then we extend simulation technique to do animation using parameter optimization. The basic idea is to add motion control over the entire animation. The motion control is finding optimal solutions while satisfying user's animation goals. We provide two different animation technique; one is for rigid body without joint actuators and the other is for rigid body with linear joint actuators. To achieve motion control, we convert single simulation to single nonliner function evaluation while either setting initial conditions as variables for the function or allocating control variables in terms of time. This method is presented with two animation examples: dice-magic and human stand-up.

  • PDF

Design and Simulation of Small Bio-Inspired Jumping Robot (생체모방 소형 점핑로봇의 설계 및 시뮬레이션)

  • Ho, Thanhtam;Choi, Sung-Hac;Lee, Sang-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1145-1151
    • /
    • 2010
  • In this paper, we discuss the design and simulation of a jumping-robot mechanism that is actuated by SMA (shape memory alloy) wires. We propose a jumping-robot mechanism; the structure of the robot is inspired by the musculoskeletal system of vertebrates, including humans. Each robot leg consists of three parts (a thigh, shank, and foot) and three kinds of muscles (gluteus maximus, rectus femoris, and gastrocnemius). The jumping capability of the robot model was tested by means of computer simulations, and it was found that the robot can jump to about four times its own height. This robot model was also compared with another model with a simpler structure, and the performance of the former, which was based on the biomimetic design, was 3.3 times better than that of the latter in terms of the jumping height. The simulation results also verified that SMA wires can be suitable actuators for small jumping robots.

Fabrication and Electromechanical Behaviors of a SWNT/PANi Composite Film Actuator (탄소나노튜브/도전성폴리머 복합재 엑츄에이터의 제조 및 특성실험)

  • Zhang, Shuai;Kim, Cheol
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.7-11
    • /
    • 2006
  • The improved SWNTs/PANi composite actuator films applicable to an artificial muscle were fabricated successfully using a new process of manufacture that consists of 90% pure single-walled carbon nanotubes (SWNT) and chemical polymerization. PANi is electrically conducting polyaniline polymer. The conductivities of the composite SWNTs/PANi film-type actuators and the pure PANi films fabricated were measured as 56.15 S/cm and 17.38 S/cm, respectively, by the 4-prove method. The conductivity of the composite actuator is 3.2 times higher than the pure PANi film. The fabricated composite actuator showed higher conductivity than any other similar ones. The quality of samples was investigated by an electron scanning microscope (SEM). To measure the actuating strains, a specially designed beam balance apparatus was developed and strains of the composite actuators was measured by a laser displacement sensor subjected to electric currents. During the operation, the sample was soaked in the $NaNO_3$ solution and the sine-wave voltage in the range of $+1V{\sim}-1V$ was applied. The length of the composite actuator changed from $l_0=12.690$ mm to $l_1=12.733$ so that the change of length was l=0.043 mm and the strain was 0.34 %. This is a very high strain for this kind of a composite actuator. Other result reported by Tahhan showed 0.23 % strain, so that the present result is improved by 48%.

Improved IPMCs and It's Application for Flapping Actuator (IPMCs(Ionic Polymer Metal Composites) 성능 개선 및 날갯짓 작동기로의 응용)

  • Lee, Soon-Gie;Yoo, Young-Tai;Heo, Seok;Park, Hoon-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.723-726
    • /
    • 2005
  • The two major obstacles in the application of IPMC to flapping actuators operated in the air are solvent loss and actuation force. In this paper, solvent loss of various IPMCs made of Nafion$^{TM}$117(183$\mu$m thickness) has been experimentally investigated to find out the best combination of cation and solvent for minimal solvent loss in IPMCs and higher actuation force. For this purpose. experiments for the internal solvent loss measurement of IMPCs have been conducted for various combinations of cation and solvent. From the experiments, it was found that heavy water showed improvement in the operating time up to more than two minutes. in the tip force measurement of IPMCs, it was found that smaller and thicker IPMCs produced larger tip forces. However, the shorter IPMCs generated reduced actuation displacements and created flapping motion with decreased natural frequency. For the design of flapping device actuated by 5mm wide, 10mm long, 0.2mm thick IPMCs were used in the stacked form. Since the actuation force is a few gram-force, we stacked five IPMCs to improve actuation force. To amply the actuation force, rack-and-pin ion type hinge was used for the flapping device and insect (Cicadidae) wing was attached to the stacked IPMC actuator. In the flapping test, the device could generate flapping angle of 15$^{\circ}$ at 6Hz excitation by 2.5 voltage square wave input.

  • PDF

Mechanical Design Fabrication and Test of a Biomimetic Fish Robot Using LIPCA as an Artificial Muscle (인공근육형 LIPCA를 이용한 물고기 모방 로봇의 설계, 제작 및 실험)

  • Heo, Seok;Wiguna, T.;Goo, Nam-Seo;Park, Hoon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.36-42
    • /
    • 2007
  • This paper presents mechanical design, fabrication and test of a biomimetic fish robot actuated by a unimorph piezoceramic actuator, LIPCA(Lightweight Piezo-Composite curved Actuator.) We have designed a linkage mechanism that can convert bending motion of the LIPCA into the caudal fin movement. This linkage system consists of a rack-pinion system and four-bar linkage. Four types of artificial caudal fins that resemble caudal fin shapes of ostraciiform subcarangiform, carangiform, and thunniform fish, respectively, are attached to the posterior part of the robotic fish. The swimming test under 300 $V_{pp}$ input with 0.6 Hz to 1.2 Hz frequency was conducted to investigate effect of tail beat frequency and shape of caudal fin on the swimming speed of the robotic fish. At the frequency of 0.9 Hz, the maximum swimming speeds of 1.632 cm/s, 1.776 cm/s, 1.612 cm/s and 1.51 cm/s were reached for fish robots with ostraciiform, subcarangiform carangiform and thunniform caudal fins, respectively. The Strouhal number, which means the ratio between unsteady force and inertia force, or a measure of thrust efficiency, was calculated in order to examine thrust performance of the present biomimetic fish robot. The calculated Strouhal numbers show that the present robotic fish does not fall into the performance range of a fast swimming robot.

Associative Interactive play Contents for Infant Imagination (유아 상상력을 위한 연상 인터렉티브 놀이 콘텐츠)

  • Jang, Eun-Jung;Lim, Chan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.371-376
    • /
    • 2019
  • Creative thinking appears even before it is expressed in language, and its existence is revealed through emotion, intuition, image and body feeling before logic or linguistics rules work. In this study, Lego is intended to present experimental child interactive content that is applied with a computer vision based on image processing techniques. In the case of infants, the main purpose of this content is the development of hand muscles and the ability to implement imagination. The purpose of the analysis algorithm of the OpenCV library and the image processing using the 'VVVV' that is implemented as a 'Node' in the midst of perceptual changes in image processing technology that are representative of object recognition, and the objective is to use a webcam to film, recognize, derive results that match the analysis and produce interactive content that is completed by the user participating. Research shows what Lego children have made, and children can create things themselves and develop creativity. Furthermore, we expect to be able to infer a diverse and individualistic person's thinking based on more data.