Proceedings of the Korean Operations and Management Science Society Conference
/
2000.04a
/
pp.302-305
/
2000
본 논문은 데이터베이스에 존재하는 데이터 값들 사이의 유사성에 관한 지식을 이용하여 사용자가 요구한 정확한 답뿐 아니라 그와 유사한 답까지 제공해 줄 수 있는 근사적 질의처리 기법을 제시한다. 이를 위하여, 계량적인 방법에 해당하는 퍼지 관계와 비계량적인 방법에 해당하는 데이터 추상화를 하나로 통합한 유사성 표현 프레임웍을 제시하고 그를 이용한 지식 베이스를 설계한다.
차세대 초고속 무선 전송을 위한 OFDM (orthogonal frequency division multiplexing) 방식에서는 전송 신호의 진폭이 큰 PAPR (peak-to-average power ratio)을 갖게 되어 송신기에서 사용되는 고출력 증폭기의 비선형성에 의해 큰 왜곡을 받게 된다. 이러한 왜곡의 보상을 위하여 우리는 고정점 반복 (fixed point iteration)에 기반한 사전왜곡기 (predistorter)를 제안하였으나, 이는 고출력 증폭기의 특성이 변화하지 않는다는 가정에서 구현되었다. 본 논문에서는 구간 선형 근사에 기반하여 고출력 증폭기의 시변 특성을 추종하는 새로운 기법과 이렇게 근사된 고출력 증폭기 특성을 이용하는 적응적인 고정점 반복 사전왜곡기의 구현을 제안한다. 모의실험 결과, 제안된 고출력 증폭기 근사 방법은 랜덤한 증폭기 특성 변화를 매우 효과적으로 추종하며 이러한 근사 결과를 이용한 고정점 반복 사전왜곡기는 우수한 성능을 보임을 확인하였다.
본 논문에서는 정형 명세 도구인 Spin을 이용한 근사 정렬된 우선 순위 큐 스케줄러 알고리즘에 대한 정형 명세 방법론을 제시하였다. 최근에 제안된 패킷 스케줄링 알고리즘은 우선 순위(마감 순위, 가상 종료 시간, 시간 스템프 등)에 따라 QoS를 지원한다. 그러나 QoS를 지원하기 위한 우선 순위를 유지하는데는 많은 오버 헤드가 요구된다. 따라서 근사된 우선 순위 큐 스케줄러 알고리즘은 낮은 계산상의 오버 헤드를 통해 근사된 우선 순위 큐를 유지함으로서 정확한 우선 순위 큐를 유지하기 위한 오버 헤드와의 trade off를 고려한다. 큐는 주기적으로 회전을 하며 최소한의 포인터 오퍼레이션을 통해 근사된 우선 순위 큐를 유지한다. 이러한 스케줄러 알고리즘의 동작 과정을 정형 기법을 이용하여 패킷 스케줄링상에 기아 현상등이나 데드락 현상등의 발생여부를 검증하는 방법등의 연구가 전무한 상태이다. 정형 명세 도구인 Spin을 이용하여 제안된 알고리즘을 명세하는 방법론을 기술한다.
To estimate array shape with reference sources in SONAR systems, nearfield signal modeling is required for the reference sources near a towed array. Array shape estimation method based on the nearfield signal modeling generally exploits the spatial covariance matrix of the received reference sources. Among those method, nearfield eigenvector method uses the eigenvector corresponding to the maximum eigenvalue as a steering vector of the reference source. In this paper, we propose a simplified subspace fitting method based on the nearfield signal modeling with spherical wave modeling. Furthermore, we analyze performance of the array shape estimation methods based on the nearfield signal modeling for various environments. The results of the numerical experiments indicate that the simplified subspace fitting method and the nearfield eigenvector method with single reference source shows almost similar performance. Furthermore, the simplified subspace fitting method with 2 reference sources consistently estimates the shape of the array regardless of the incident angle of the reference sources, whereas the nearfield eigenvector method cannot apply for the case of 2 reference sources.
With the growing popularity of smart devices, various location based services have been providing to users. Recently, some location based social applications that combine social services and location based services have been emerged. The demands of a k-nearest neighbors(k-NN) query which finds k closest locations from a user location are increased in the location based social network services. In this paper, we propose an approximate k-NN query processing method for fast response time in a large number of users environments. The proposed method performs efficient stream processing using big data distributed processing technologies. In this paper, we also propose a modified grid index method for indexing a large amount of location data. The proposed query processing method first retrieves the related cells by considering a user movement. By doing so, it can make an approximate k results set. In order to show the superiority of the proposed method, we conduct various performance evaluations with the existing method.
The Journal of the Korea institute of electronic communication sciences
/
v.17
no.4
/
pp.671-678
/
2022
Approximate computing is an computational technique that is acceptable degree of inaccurate results of accurate results. Approximate multiplication is one of the approximate computing methods for high-performance and low-power computing. In this paper, we propose a high-density, low-power, and high-speed approximate multiplier using approximate 4-2 compressor and improved full adder. The approximate multiplier with approximate 4-2 compressor consists of three regions of the exact, approximate and constant correction regions, and we compared them by adjusting the size of region by applying an efficient partial product reduction. The proposed approximate multiplier was designed with Verilog HDL and was analyzed for area, power and delay time using Synopsys Design Compiler (DC) on a 25nm CMOS process. As a result of the experiment, the proposed multiplier reduced area by 10.47%, power by 26.11%, and delay time by 13% compared to the conventional approximate multiplier.
Proceedings of the Computational Structural Engineering Institute Conference
/
2009.04a
/
pp.97-100
/
2009
신뢰성 분석은 불확실성으로 인한 제품의 성능 변동을 안전확률이나 파괴확률로 정량화 하여 설계에 이용하기 위해 연구되어 왔다. 불확실성은, 데이터의 양에 따라-물질의 본질적인 특성으로서의 많은 데이터가 주어진 경우의 물리적 불확실성과 부족한 데이터에서의 인식론적 불확실성으로 구분되고, 불확실성을 갖는 대상에 따라-입력변수 및 근사모델 불확실성으로 구분된다. 물리적 불확실성에 대한 연구는 많이 진행되어 왔지만, 실제 산업현장에는 부족한 데이터로 인한 인식론적 불확실성이 지배적이며 이에 대한 연구는 최근에서야 진행되고 있다. 불확실성을 고려하는 신뢰성 기반 설계에는 효율성을 위해 실제모델을 대체하는 근사모델이 이용되는데, 근사모델법 자체에 대한 연구는 많이 진행되어 왔으나, 근사모델 이기 때문에 존재하는 불확실성을 고려한 연구는 최근에서야 연구되기 시작하였다. 본 연구에서는 베이지안 접근법에 기반하여 입력변수 및 근사모델 불확실성을 통합 고려하는 새로운 신뢰성 분석 기법을 제시하고 수치예제를 통해 타당성을 증명한 후, 이를 공학문제에 적용한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.11a
/
pp.60-62
/
2016
이동통신 시스템의 OFDM(Othogonal frequency division multiplexing) 신호는 큰 PAPR(Peak to Average Power Ratio)을 가지기 때문에 비선형 특성을 가지는 전력 증폭기의 효율 감소를 가져온다. 이러한 전력 증폭기의 비선형 특성을 개선하여 효율을 증가시키기 위해서 전력 증폭기의 역 특성을 가지는 디지털 전치 왜곡기가 이용된다. 본 논문에서는 제곱근 근사를 이용한 Look-up Table(LUT) 기반의 디지털 전치왜곡(Digital Pre-Distortion :DPD) 기법을 제안한다. 제안하는 방식은 복소 이득(Complex Gain) LUT 구조에서 입력신호의 크기를 구할 때, 기존의 테이블을 이용하여 제곱근 연산을 하는 방식보다 좋은 성능을 내면서 근사를 위한 테이블의 메모리를 필요로 하지 않는다. 또한 간단한 쉬프트 연산 등을 이용하므로 DSP 또는 MCU 기반의 DPD를 구현할 때 간단하게 구현 될 수 있다는 장점을 갖는다. 컴퓨터 모의실험을 통해 제안하는 제곱근 근사방식을 이용한 DPD와 기존의 방식을 사용한 DPD를 비교함으로써 제안하는 방식이 기존 방식보다 좋은 성능을 내면서도 보다 효율적으로 구현될 수 있음을 검증하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.8
no.5
/
pp.98-106
/
1998
This paper proposes an efficient learning algorithm for improving the training performance of the
neural network. The proposed method improves the training performance by applying the backpropagation
algorithm of a global optimization method which is a hybrid of a stochastic approximation
and a conjugate gradient method. The approximate initial point for f a ~gtl obal optimization is estimated
first by applying the stochastic approximation, and then the conjugate gradient method, which is the
fast gradient descent method, is applied for a high speed optimization. The proposed method has been
applied to the parity checking and the pattern classification, and the simulation results show that the performance
of the proposed method is superior to those of the conventional backpropagation and the backpropagation
algorithm which is a hyhrid of the stochastic approximation and steepest descent method.
In modern passive sonar systems, a towed array sensor is used to minimize the effects of own ship noise and to get a higher SNR. The thin and long towed array sensor can be guided in a non-linear form according to the maneuvering of tow-ship. If this change of the array shape is not considered, the performance of beamformer may deteriorate. In order to properly beamform the elements in the array, an accurate estimate of the array shape is required. Various techniques exist for estimating the shape of the linear array. In the case of a method using a heading sensor, the estimation performance may be degraded due to the effect of heading sensor noise. As means of removing this potential error, weighted polynomial fitting technique for estimating array shape is developed here. In order to evaluate the performance of proposed method, we conducted computer simulation. From the experiments, it was confirmed that the proposed method is more robust to noise than the conventional method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.