• Title/Summary/Keyword: 근사신뢰도

Search Result 87, Processing Time 0.03 seconds

Approximate System Reliability Analysis Under Multiple Time Varying Loads (복합 하중하에서의 구조물 체계 신뢰도 해석)

  • 김상효
    • Computational Structural Engineering
    • /
    • v.1 no.2
    • /
    • pp.101-109
    • /
    • 1988
  • The evaluation of the system reliability is generally quite difficult and costly as the structure becomes large and complex, especially when it is subjected to multiple time varying loads, and for redundant structures which have many possible modes of failur, e.g., system collapse through the formation of plastic hinge mechanisms. In reality most loadings acting on the structures are random in intensity as well as in occurrence time and duration. To include the load variability in time, the loads are described in terms of stochastic processes. Based on a tri-modal upper bound, a point estimate for the system reliability has been developed for more accuracy without extensive computational effort. This tri-modal point estimate also ensures the continuity of the system reliability function, which is a necessary condition in many nonlinear programming techniques. In addition, the Load Coincidence method, by which the combined effect of time varying loads are taken into account, has been modified to suitable for cases with an always-on load.

  • PDF

가속신경회로망에 의한 암반의 물성 추정 연구

  • 김남수;양형식
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1996.03a
    • /
    • pp.35-42
    • /
    • 1996
  • 지하 구조물의 안정성 확보와 경제적인 시공을 위하여 상세하고 합리적인 암반분류가 필요하다. 설계 초기에는 제한적인 정보와 암반의 불확실성에 따라 암반분류의 신뢰도가 떨어진다. 이러한 불확실한 지질 정보를 근사하게 추론할 수 있는 방법으로서 인공지능(Artificial intelligence) 특히 인공신경망 (Artificial neural network)이 있다. (중략)

  • PDF

A Study on the Sequential Design Domain for the Approximate Optimum Design (근사 최적설계를 위한 순차 설계영역에 관한 연구)

  • 김정진;이진식;임오강
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.339-348
    • /
    • 2001
  • More often a commercial package for the structural analysis is necessary in the structural optimum design. In this case the task of combining the package with an optimization program must be required, hut it is not so simple because interchanging some data between them is difficult. Sequential approximate optimization is currently used as a natural way to overcome the hard task. If sequential approximate optimization has wide side constraints that the lower limit of design variables is very small and their upper limit is very large, it is not so easy to obtain approximated functions accurately for the whole design domain. This paper proposes a sequential design domain method, which is very useful to carry out sequential approximate optimization in this case. In this paper, the response surface methodology is used to obtain approximated functions and the orthogonal array is used for design of experiments. The sequential approximate optimization of 3-bar and 10-bar trusses is demonstrated to verify the reliability of the sequential design domain method.

  • PDF

Performance Improvement of a Moment Method for Reliability Analysis Using Kriging Metamodels (크리깅 근사모델을 이용한 통계모멘트 기반 신뢰도 계산의 성능 개선)

  • Ju Byeong-Hyeon;Cho Tae-Min;Jung Do-Hyun;Lee Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.985-992
    • /
    • 2006
  • Many methods for reliability analysis have been studied and one of them, a moment method, has the advantage that it doesn't require sensitivities of performance functions. The moment method for reliability analysis requires the first four moments of a performance function and then Pearson system is used for the probability of failure where the accuracy of the probability of failure greatly depends on that of the first four moments. But it is generally impossible to assess them analytically for multidimensional functions, and numerical integration is mainly used to estimate the moment. However, numerical integration requires many function evaluations and in case of involving finite element analyses, the calculation of the first fo 따 moments is very time-consuming. To solve the problem, this research proposes a new method of approximating the first four moments based on kriging metamodel. The proposed method substitutes the kriging metamodel for the performance function and can also evaluate the accuracy of the calculated moments adjusting the approximation range. Numerical examples show the proposed method can approximate the moments accurately with the less function evaluations and evaluate the accuracy of the calculated moments.

New Approaches for Calibrating Material Factors of Reinforced Concrete Members in Korean Highway Bridge Design Code (Limit State Design) and Reliability Analysis (도로교설계기준(한계상태설계법)의 콘크리트부재 설계를 위한 재료계수 결정법 및 신뢰도 분석)

  • Lee, Hae Sung;Song, Sang Won;Kim, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • This paper brings up fallacy of material factors specified for the design of concrete members in the current Korean limit state design code for highway bridges, and proposes new material factors based on a robust optimization scheme to overcome the fallacy. It is shown that the current load factors in the code and the proposed material factors lead to a much higher reliability index than the target index. The load factors are adjusted to yield the target reliability index using the inverse reliability analysis. A reliability-based approach following the basic concept of Eurocode is formulated to determine material factors as well as load factors. The load-material factors obtained by the proposed reliability-based approach yield a lower reliability level than the target index. Drawbacks of the basic concept of Eurocode are discussed. It is pointed out that differences in the uncertainties between materials and members may cause the lower reliability index of concrete member than the target.

Verification of Stream Flow by Rainfall-Runoff Simulation and Hydrologic Analysis in Daecheong Basin (수문 특성 분석에 의한 대청유역 주요지점 유출모의 검증)

  • Lee, Sang-Jin;Kim, Joo-Cheol;Noh, Joon-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • In this study long term rainfall-runoff model, developed based on SSARR, was applied to Geum river basin and its simulation results of major control points were compared with the corresponding observed channel discharges. The validities of the simulation results were examined with re-measured discharges of those control points. From the above procedure the points showing the unreliable results were found out and its principal causes are analyzed through hydrological inspection of runoff characteristics of their circumstances. Finally the simulation results were modified by the consideration of the effects by small-scale hydraulic structures which could directly affect the channel discharges. As a result the annual runoff simulations of two major points in Geum river basin, Yongdam and Daecheong dam sites, work well. However the low flow simulation of the point located between them, Sutong station, showed more or less the unreliable result. Its causes are considered by means of the hydraulic/hydrological inspection of the corresponding point.

Frame Reliability Weighting for Robust Speech Recognition (프레임 신뢰도 가중에 의한 강인한 음성인식)

  • 조훈영;김락용;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.323-329
    • /
    • 2002
  • This paper proposes a frame reliability weighting method to compensate for a time-selective noise that occurs at random positions of speech signal contaminating certain parts of the speech signal. Speech frames have different degrees of reliability and the reliability is proportional to SNR (signal-to noise ratio). While it is feasible to estimate frame Sl? by using the noise information from non-speech interval under a stationary noisy situation, it is difficult to obtain noise spectrum for a time-selective noise. Therefore, we used statistical models of clean speech for the estimation of the frame reliability. The proposed MFR (model-based frame reliability) approximates frame SNR values using filterbank energy vectors that are obtained by the inverse transformation of input MFCC (mal-frequency cepstral coefficient) vectors and mean vectors of a reference model. Experiments on various burnt noises revealed that the proposed method could represent the frame reliability effectively. We could improve the recognition performance by using MFR values as weighting factors at the likelihood calculation step.

Development of design framework based on reliability analysis using MATLAB (MATLAB 을 이용한 신뢰도 기반 설계 시스템 개발)

  • Sung, Young-Hwa;Kwak, Byung-Man;Maute, Kurt
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1642-1647
    • /
    • 2007
  • The aim of this research is to implement a design framework based on reliability analysis and make it possibly used for a reliable and robust design under uncertainties. Different types of reliability methods and algorithms are programmed to explore their characteristics. In our work, RIA and the PMA are employed for formulating the reliability analysis problems. A number of reliability methods are introduced in this program such as FORM, AMV/AMV+ and MCS. Reliability analysis can be easily performed with this tool box only if a drive file is ready to run. Users need to select random design variables and define their distributions and correlation.

  • PDF

A Comparative Study on the Analysis Methods of Degradation Data under Random Coefficient Model (확률계수 열화모형하에서 열화자료의 분석방법 비교 연구)

  • Jo Yu-Hui;Seo Sun-Geun;Lee Su-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.117-123
    • /
    • 2006
  • 최근 들어 전통적인 (가속)수명시험으로도 고 신뢰도 제품의 신뢰도 평가가 힘들므로 제품의 성능열화를 관측하여 수명 정보를 추정하는 열화 시험에 대한 관심이 증대되고 있다. 본 논문은 대수정규분포를 따르는 확률계수 열화율 모형 하에서 분포 모수 및 수명분포의 분위수를 추정하는 세 가지 통계적 분석법(근사적, 해석적, 수치적 방법)의 통계적 성능을 비교하였다. 즉, 다양한 수치실험상황 하에서 모형에 포함되는 (측정)오차의 영향을 고려하여 세 방법의 우월성을 조사하였다.

  • PDF

Enhancement of Computational Efficiency of Reliability Optimization Method by Approximate Evaluation of Sub-Optimization Problem (부 최적화 문제의 근사적인 계산을 통한 신뢰도 최적설계 방범의 효율개선)

  • Jeong, Do-Hyeon;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1597-1604
    • /
    • 2001
  • Alternative computational scheme is presented fur reliability based optimal design using a modified advanced first order second moment (AFOSH) method. Both design variables and design parameters are considered as random variables about their nominal values. Each probability constraint is transformed into a sub -optimization problem and then is resolved with the modified Hasofer- Lind-Rackwitz-Fiessler (HL-RF) method for computational efficiency and convergence. A method of design sensitivity analysis for probability constraint is presented and tested through simple examples. The suggested method is examined by solving several examples and the results are compared with those of other methods.