• Title/Summary/Keyword: 근골격 모델

Search Result 88, Processing Time 0.021 seconds

Virtual Test Framework for Smith Squat Exercise Based on Integrated Product-Human Model (제품과 인체의 통합 모델을 바탕으로 한 스미스 스쿼트 운동의 가상 시험 프레임워크)

  • Lee, Haerin;Jung, Moonki;Lee, Sang Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.691-701
    • /
    • 2017
  • The barbell squat is a fundamental physical exercise for strengthening the lower body and core muscles. It is an integral part of training and conditioning programs in sports, rehabilitation, and fitness. In this paper, we proposed a virtual test framework for squat exercises using a Smith machine to simulate joint torques and muscle forces, based on an integrated product-human model and motion synthesis algorithms. We built a muscular skeletal human model with boundary conditions modeling the interactions between the human body and a machine or the ground. To validate the model, EMG, external forces, and squat motions were captured through physical experiments by varying the foot position. A regression-based motion synthesis algorithm was developed based on the captured squat motions to generate a new motion for a given foot position. The proposed approach is expected to reduce the need for physical experiments in the development of training programs.

A Study on the Dynamic and Impact Analysis of Side Kick in Taekwondo (태권도 옆차기 동작의 동력학해석과 충격해석에 관한 연구)

  • Lee, Jung-Hyun;Han, Kyu-Hyun;Lee, Hyun-Seung;Lee, Eun-Yup;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • Taekwondo is a martial art form and sport that uses the hands and foot for attack and defense. Taekwondo basic motion is composed of the breaking, competition and poomsea motion. In the side kick among the competition motion, the impact force is larger than other kinds of kicks. The side kick with the front foot can be made in two steps. In the first step, the front foot is stretched forward from back stance free-fighting position. For the second step, the rear foot is followed simultaneously. Then, the kick is executed while entire body weight rests on the rear foot. In this paper, impact analysis of the human model for hitting posture is carried out. The ADAMS/LifeMOD is used in hitting modeling and simulation. The simulation model creates the human model to hit the opponent. As the results, the dynamic analysis of human muscle were presented.

A comprehensive model for musculoskeletal disorders of hospital workers based on ergonomic risk and psychosocial factors (병원근로자의 근골격계질환에 대한 인간공학적 위험도 및 사회심리적 요인의 영향에 대한 연구 -경로분석 모델을 중심으로-)

  • Choi, Soon-Young;Son, Chang-Won;Hur, Kook-Kang;Park, Dong-Hyun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.329-341
    • /
    • 2008
  • The psychosocial stress and musculoskeletal disorders(MSDs) have been one of major health problems for hospital workers. This study tried to understand the relationship between symptoms associated with MSDs and risk factors such as working posture, job stress, psychosocial stress and fatigue. A total number of 655 hospital workers participated in this study. Specifically, REBA was applied for evaluating working posture and a checklist prepared by KOSHA(Korean Occupational Safety and Health Agency) was used for symptom survey. A questionnaire from KOSHA was also used for collecting data associated with job stress, psychosocial stress and fatigue. All these data were formulated and modeled by path analysis which was one of major statistical tools in this study. Specifically, path analysis for the data we collected came up with several major findings. The risk scores from working posture based on REBA had indirect effects via fatigue factor(MFS) as well as direct effects on symptoms. The factors associated with job stress(KOSS) and psychosocial stress(PWI-SF) had significant effects on symptoms. Specifically, indirect effect of job stress factors via fatigue factors(MFS) had bigger than that of direct effect of job stress on symptom.

  • PDF

Musculoskeletal Models to Predict Patient-specific Gait Patterns Using Function-based Morphing Technique (기능기반 형상변형기술을 응용한 환자맞춤형 근골격 모델의 보행패턴 예측에 관한 연구)

  • Park, Byoung-Keon;Koo, Bon-Yeol;Park, Eun-Joo;Chae, Jae-Wook;Lee, Soon-Hyuk;Kim, Jae-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.443-455
    • /
    • 2012
  • The configuration of a musculoskeletal (MS) system is closely related to the individual motions of the human body. Many researches have been focused on evaluating the associations between the MS configuration and the individual motion using patient-specific MS models, but it still remains a challenging issue to accurately predict the motion by differed configurations of the MS system. The main objective of this paper is to predict the changes of a patient-specific gait by altering the geometric parameters of the hip joint using function-based morphing method (FBM). FBM is suitable for motion analysis since this method provide a robust way to morph a MS model while preserving the biomechanical functions of the bones. Computed-muscle control technique is used to calculate the muscle excitations to reproduce the targeted motion within a digital MS model without the motion-captured data. We applied this approach to a patient who has an abnormal gait pattern. Results showed that the femoral neck length and the angle significantly affect to the motion especially for the hip abduction angle during gait, and that this approach is suitable for gait prediction.

A Clinical Application of 3D Muscle-Tendon Complex Model for the Estimation of Lowerbody Musculoskeletal Disorders (하지 근골격계질환 평가를 위한 삼차원 근.건모델의 임상적용)

  • Rim, Yong-Hoon;Choi, Jae-Il;Choi, Ahn-Ryul;Min, Kyoung-Kee;Yun, Tae-Sun;Park, Kwang-Yong;Mun, Joung-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Kinematic analysis of MTC (Muscle-Tendon Complex) units is a key indicator for diagnosis of patients with musculoskeletal disorders because the contracture or shortening of musculo-tendinous units is known to produce pathological gaits. Therefore, the principal objective of this study was to assess the length change in the triceps surae prior to and after wearing an AFO (Ankle-Foot Orthoses) in patients with musculoskeletal disorders during a gait. In this study, analyses were conducted using a Muscle Tendon Complex model coupled with the trajectory data from markers attached to anatomical landmarks. As a result, the maximum length change in the triceps surae during a gait was 4.87% when a barefoot walking group and a walking group with AFO were compared. In particular, the difference in length changes between both groups in Soleus MTC units was found to be statistically significant in all gait phases. Our results revealed that MTC length in the AFO walking group was clearly increased over that of the barefoot walking group. In the future, further studies will be required in order to more adequately assess musculoskeletal disorders using many cases studies with regard to agricultural working conditions because this study deals with the kinematic analysis of musculo-tendinous units in the case of clinical experiments.

Study on the Short-Term Hemodynamic Effects of Experimental Cardiomyoplasty in Heart Failure Model (심부전 모델에서 실험적 심근성형술의 단기 혈역학적 효과에 관한 연구)

  • Jeong, Yoon-Seop;Youm, Wook;Lee, Chang-Ha;Kim, Wook-Seong;Lee, Young-Tak;Kim, Won-Gon
    • Journal of Chest Surgery
    • /
    • v.32 no.3
    • /
    • pp.224-236
    • /
    • 1999
  • Background: To evaluate the short-term effect of dynamic cardiomyoplasty on circulatory function and detect the related factors that can affect it, experimental cardiomyoplasties were performed under the state of normal cardiac function and heart failure. Material and Method: A total of 10 mongrel dogs weighing 20 to 30kg were divided arbitrarily into two groups. Five dogs of group A underwent cardiomyoplasty with latissimus dorsi(LD) muscle mobilization followed by a 2-week vascular delay and 6-week muscle training. Then, hemodynamic studies were conducted. In group B, doxorubicin was given to 5 dogs in an IV dose of 1 mg/kg once a week for 8 weeks to induce chronic heart failure, and simultaneous muscle training was given for preconditioning during this period. Then, cardiomyoplasties were performed and hemodynamic studies were conducted immediately after these cardiomyoplasties in group B. Result: In group A, under the state of normal cardiac function, only mean right atrial pressure significantly increased with the pacer-on(p<0.05) and the left ventricular hemodynamic parameters did not change significantly. However, with pacer-on in group B, cardiac output(CO), rate of left ventricular pressure development(dp/dt), stroke volume(SV), and left ventricular stroke work(SW) increased by 16.7${\pm}$7.2%, 9.3${\pm}$3.2%, 16.8${\pm}$8.6%, and 23.1${\pm}$9.7%, respectively, whereas left ventricular end-diastole pressure(LVEDP) and mean pulmonary capillary wedge pressure(mPCWP) decreased by 32.1${\pm}$4.6% and 17.7${\pm}$9.1%, respectively(p<0.05). In group A, imipramine was infused at the rate of 7.5mg/kg/hour for 34${\pm}$2.6 minutes to induce acute heart failure, which resulted in the reduction of cardiac output by 17.5${\pm}$2.7%, systolic left ventricular pressure by 15.8${\pm}$2.5% and the elevation of left ventricular end-diastole pressure by 54.3${\pm}$15.2%(p<0.05). With pacer-on under this state of acute heart failu e, CO, dp/dt, SV, and SW increased by 4.5${\pm}$1.8% and 3.1${\pm}$1.1%, 5.7${\pm}$3.6%, and 6.9${\pm}$4.4%, respectively, whereas LVEDP decreased by 11.7${\pm}$4.7%(p<0.05). Comparing CO, dp/dt, SV, SW and LVEDP that changed significantly with pacer-on, both under the state of acute and chronic heart failure, augmentation widths of these left ventricular hemodynamic parameters were significantly larger under the state of chronic heart failure(group B) than acute heart failure(group A)(p<0.05). On gross inspection, variable degrees of adhesion and inflammation were present in all 5 dogs of group A, including 2 dogs that showed no muscle contraction. No adhesion and inflammation were, however, present in all 5 dogs of group B, which showed vivid muscle contractions. Considering these differences in gross findings along with the following premise that the acute heart failure state was not statistically different from the chronic one in terms of left ventricular parameters(p>0.05), the larger augmentation effect seen in group B is presumed to be mainly attributed to the viability and contractility of the LD muscle. Conclusion: These results indicate that the positive circulatory augmentation effect of cardiomyoplasty is apparent only under the state of heart failure and the preservation of muscle contractility is important to maximize this effect.

  • PDF

Estimation of Human Lower-Extremity Muscle Force Under Uncertainty While Rising from a Chair (의자에서 일어서는 동작 시 불확실성을 고려한 인체 하지부 근력 해석)

  • Jo, Young Nam;Kang, Moon Jeong;Chae, Je Wook;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1147-1155
    • /
    • 2014
  • Biomechanical models are often used to predict muscle and joint forces in the human body. For estimation of muscle forces, the body and muscle properties have to be known. However, these properties are difficult to measure and differ from person to person. Therefore, it is necessary to predict the change in muscle forces depending on the body and muscle properties. The objective of the present study is to develop a numerical procedure for estimating the muscle forces in the human lower extremity under uncertainty of body and muscle properties during rising motion from a seated position. The human lower extremity is idealized as a multibody system in which eight Hill-type muscle force models are employed. Each model has four degrees of freedom and is constrained in the sagittal plane. The eight muscle forces are determined by minimizing the metabolic energy consumption during the rising motion. Uncertainty analysis is performed using a first-order reliability method. The one-standard-deviation range of agonistic muscle forces is calculated to be about 150-300 N.

Posture Analysis of Workers in an Excavator Factory Using 3D Human Simulation (3D 작업자 시뮬레이션을 이용한 굴삭기 생산공정 작업자 자세분석)

  • Moon, Dug-Hee;Baek, Seung-Geun;Zhang, Bing-Lin;Lee, Jun-Seok
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.93-101
    • /
    • 2006
  • Recently, work-related musculoskeletal disorders (WMSDs) become a hot issue in the industrial fields. To prevent the potential risk of workers, various approaches have been adopted. One of the approaches is to improve the design of product, that of jig (or fixture) and that of workstation in the early stage of the development. 3D simulation technology is known as the powerful method for detecting such problems before constructing the workstation, because it is possible to evaluate the posture of worker using 3D models in a cyber space. It enables to find the unexpected problems and save the time and cost for redesign and rework. This paper introduces a 3D simulation case study of workers in an excavator factory. 3D models of products, jigs were developed with CATIA. The assembly processes were animated in IGRIP and DPM. Finally the various postures of worker were simulated using Human. As a result, some postures were analysed as the risky jobs and the result of simulation was used to improve the system.

  • PDF

Tenebrio molitor (Mealworm) Extract Improves Insulin Sensitivity and Alleviates Hyperglycemia in C57BL/Ksj-db/db Mice (C57BL/Ksj-db/db 제 2형 당뇨모델을 이용한 갈색거저리 유충(밀웜) 추출물의 인슐린 감수성 및 혈당개선효과)

  • Kim, Seon Young;Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.570-579
    • /
    • 2019
  • Diabetes is one of the serious chronic metabolic diseases caused by Westernized eating habits, and the goal of diabetes treatment is to keep blood glucose at a normal level and prevent diabetic complications. This study was designed to investigate the anti-diabetic effects of a mealworm (Tenebrio molitor larva) extract (MWE) on hyperglycemia in an animal model with type 2 diabetes. Diabetic C57BL/Ksj-db/db mice were divided into three groups: diabetic control, rosiglitazone, and MWE. The mice supplemented with MWE showed significantly lower blood levels of glucose and glycosylated hemoglobin when compared with the diabetic control mice. The homeostatic index of insulin resistance was significantly lower in mice supplemented with MWE than in diabetic control mice. MWE supplementation significantly stimulated the phosphorylation of insulin receptor substrate-1 and Akt, and activation of phosphatidylinositol 3-kinase in insulin signaling pathway of skeletal muscles. Eventually, MWE increased the expression of the plasma membrane glucose transporter 4 (GLUT4) via PI3K/Akt activation. These findings demonstrate that the increase in plasma membrane GLUT4 expression by MWE promoted the uptake of blood glucose into cells and relieved hyperglycemia in skeletal muscles of diabetic C57BL/Ksj-db/db mice. Therefore, mealworms are expected to prove useful for the prevention and treatment of diabetes, and further studies are needed to improve type 2 diabetes in the future.

Ameliorative Effects of Soybean Leaf Extract on Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes and a C57BL/6 Mouse Model (콩잎 추출물의 근위축 개선 효과)

  • Hye Young Choi;Young-Sool Hah;Yeong Ho Ji;Jun Young Ha;Hwan Hee Bae;Dong Yeol Lee;Won Min Jeong;Dong Kyu Jeong;Jun-Il Yoo;Sang Gon Kim
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1036-1045
    • /
    • 2023
  • Sarcopenia, a condition characterized by the insidious loss of skeletal muscle mass and strength, represents a significant and growing healthcare challenge, impacting the mobility and quality of life of aging populations worldwide. This study investigated the therapeutic potential of soybean leaf extract (SL) for dexamethasone (Dexa)-induced muscle atrophy in vitro and in an in vivo model. In vitro experiments showed that SL significantly alleviated Dexa-induced atrophy in C2C12 myotube cells, as evidenced by preserved myotube morphology, density, and size. Moreover, SL treatment significantly reduced the mRNA and protein levels of muscle RING-finger protein-1 (MuRF1) and muscle atrophy F-box (MAFbx), key factors regulating muscle atrophy. In a Dexa-induced atrophy mouse model, SL administration significantly inhibited Dexa-induced weight loss and muscle wasting, preserving the mass of the gastrocnemius and tibialis anterior muscles. Furthermore, mice treated with SL exhibited significant improvements in muscle function compared to their counterparts suffering from Dexa-induced muscle atrophy, as evidenced by a notable increase in grip strength and extended endurance on treadmill tests. Moreover, SL suppressed the expression of muscle atrophy-related proteins in skeletal muscle, highlighting its protective role against Dexa-induced muscle atrophy. These results suggest that SL has potential as a natural treatment for muscle-wasting conditions, such as sarcopenia.