• Title/Summary/Keyword: 극한 한계 상태

Search Result 88, Processing Time 0.027 seconds

Realistic Estimate Method of Reinforced Concrete Column's Ultimate Strength Using the Nonlinear Finite Element Analysis Program (비선형 유한요소해석 프로그램을 이용한 철근콘크리트 기둥부재의 합리적인 극한강도 평가 방안)

  • Cheon, Ju-Hyoun;Kim, Ki-Ho;Seong, Dae-Jeong;Park, Jae-Guen
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.133-140
    • /
    • 2008
  • The design method of the reinforced concrete structures is converting from the current limit state design method to the reliability based design method and active studies have been done in the US, Europe, and Japan etc. Performance based design method is considering lots of uncertainty of current design provision rationally and make sure that structure have a reliable reliability and safety. The main area of these studies is to secure the non-linear analysis technology with high reliability. The data for reinforced concrete columns tested by many researchers are used to verify the applicability of the nonlinear finite element analysis program (RCAHEST, Reinforced Concrete Analysis in Higher Evaluation System Technology). A comparison is made between analysis and test, calculated safety factor based on reliability theories to applies to analysis result.

A Case Study on the Stability Evaluation of Piles for Negative Skin Eviction by the LRFD Approach (LRFD설계법에 의한 부마찰력이 작용하는 말뚝의 안정성 평가 사례 연구)

  • Cho Chun-Whan;Kim Woong-Kyu;Lee Woo-Chel
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.123-131
    • /
    • 2005
  • Recently, construction activities in reclaimed onshore areas increase in our country In this case, the stability evaluation of the piles for negative skin friction is an important factor for the design of pile foundation in soft grounds. Nevertheless, the design of piles for negative skin friction (or downdrag forces) is probably poorly understood by many geotechnical engineers. It is mainly because only the bearing capacity aspect is taken into account for the downdrag evaluation of piles in most of design specifications. However, the problems fur negative skin friction of piles are mostly related with settlement rather than bearing capacity Meanwhile, LRFD (Load Resistance Factor Design) approach considers both ultimate limit state in terms of bearing capacity and serviceability limit state in terms of settlements. This paper proposes LRFD approach for the downdrag evaluation of piles and compares this approach to traditional design approach. And also a case history is analyzed. Through the analysis some suggestions to solve the problems for the design of piles for negative skin friction are suggested.

Revaluation of Nominal Flexural Strength of Composite Girders in Positive Bending Region (정모멘트부 강합성거더의 공칭휨강도 재평가)

  • Youn, Seok Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.165-178
    • /
    • 2013
  • This paper presents a research work for the evaluation of the nominal flexural strength of composite girders in positive bending region. Current predicting equations for the nominal flexural strength of composite girders in the 2012 version of the Korea Bridge Design Codes based on Limit State Design Method are able to apply for the composite girders with conventional structural steels. For applying composite girders with high yield strength steels of HSB800 as well as HSB600, there is a need for improving the current predicting equations. In order to investigate the nominal flexural strength of composite girders, previous research works are carefully reviewed and parametric study using a moment-curvature analysis program is conducted to evaluate the ultimate moment capacity and the ductility of a wide range of composite girders. Based on the results of the parametric study, less conservative nominal flexural strength design equations are proposed for conventional composite girders. In addition, new design equations for predicting the nominal flexural strength of composite girders with HSB600 and HSB800 high-performance steels are provided.

Introduction to the production procedure of representative annual maximum precipitation scenario for different durations based on climate change with statistical downscaling approaches (통계적 상세화 기법을 통한 기후변화기반 지속시간별 연최대 대표 강우시나리오 생산기법 소개)

  • Lee, Taesam
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1057-1066
    • /
    • 2018
  • Climate change has been influenced on extreme precipitation events, which are major driving causes of flooding. Especially, most of extreme water-related disasters in Korea occur from floods induced by extreme precipitation events. However, future climate change scenarios simulated with Global Circulation Models (GCMs) or Reigonal Climate Models (RCMs) are limited to the application on medium and small size rivers and urban watersheds due to coarse spatial and temporal resolutions. Therefore, the current study introduces the state-of-the-art approaches and procedures of statistical downscaling techniques to resolve this limitation It is expected that the temporally downscaled data allows frequency analysis for the future precipitation and estimating the design precipitation for disaster prevention.

Estimation of resistance coefficient of PHC bored pile by Load Test (재하시험에 의한 PHC 매입말뚝의 저항계수 산정)

  • Park, Jong-Bae;Kwon, Young-Hwan
    • Land and Housing Review
    • /
    • v.8 no.4
    • /
    • pp.233-247
    • /
    • 2017
  • In Europe and the USA, the use of limit state design method has been established, and the Korea Ministry of Land, Transport and Maritime Affairs has implemented the bridge substructure design standard based on the critical state. But Korean piling methods and ground conditions are different from Europe and USA, the limit state design method can not be used immediately. In this study, the resistance coefficient was proposed by comparing and analyzing the results of the static load test(9 times) and dynamic load tests(9 times of EOID and 9 times of Restrike) with the bearing capacity calculated by Meyerhof(LH design standard, Road bridge design standard) method and surcharge load method(using Terzaghi's bearing capacity coefficient and Hansen & Vesic's bearing capacity coefficient). The previous LHI study showed the resistance coefficient of the LH design standard was 0.36 ~ 0.44, and this research result showed the resistance coefficient was 0.39 ~ 0.48 which is about 8% higher than the previous study. In this study, we tried to obtain the resistance coefficient mainly from the static load test and the resistance coefficient was 0.57 ~ 0.69(Meyhof method : LH design standard) based on the ultimate bearing capacity and the resistance coefficient was 0.49 ~ 0.60(Meyhof method : LH design standard) based on the Davissons bearing capacity. The difference of the resistance coefficient between the static and dynamic load test was greater than that we expected, we proposed the resistance coefficient(0.52 ~ 0.62 : Meyerhof method: LH design standard) using the modified bearing capacity of the dynamic load test. Summarizing the result, the coefficient of resistance obtained from the static and dynamic load tests was 0.35 ~ 0.76, which is greater than 0.3 suggested by the Road bridge design standard, so the economical design might be possible using the coefficient of resistance proposed by this study.

Evaluation of Flexural Behavior of Hollow Prestressed Concrete Pile for Continuous Pile Wall (주열식 벽체용 중공 프리스트레스트 콘크리트 파일의 휨거동 평가)

  • Lee, Young-Geun;Jang, Min-Jun;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.20-27
    • /
    • 2014
  • In the construction site, various earth retaining systems are developed and applied to maintain stability of excavated area and structures. Among the methods, the underground continuous wall and the column-type diaphragm wall methods are especially used in construction site nearby buildings or roads. However, these methods have some disadvantages such as the difficulty of quality control and long curing time because these methods need to cast fresh concrete at the construction site. In addition, these methods are usually applied to the site for the temporary purpose. In this paper, we suggest precast hollow prestressed concrete pile for continuous pile wall system. To investigate the structural behavior of suggested pile, which is the main member of the suggested system, tests pertaining to the structural behavior and prestressing force applied in the pile are conducted. From the test results, it was found that the prestressing force measured is sufficient compared with the value obtained by the design equation and the cracking moment measured is 34% higher than the design value. In addition to the above, this precast hollow prestressed concrete pile has an additional safety margin that the maximum moment is 59.2% higher than the cracking moment which is one of the serviceability limits for the design of the system.

Evaluation on the Structural Performance and Economics of Ultra-high Performance Concrete Precast Bridges Considering the Construction Environment in North Korea (북한 건설환경을 고려한 초고성능 콘크리트 프리캐스트 교량의 구조성능 및 경제성 평가)

  • Kim, Kyoung-Chul;Koh, Kyung-Taek;Son, Min-Su;Ryu, Gum-Sung;Kang, Jae-Yoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.208-215
    • /
    • 2021
  • In this study, a customiz ed bridge system was developed for North Korea application. For the application of North Korea, the customized bridge system design, fabrication, and construction performance evaluation were performed using ultra-high performance concrete a compressive strength 120MPa or more and a direct tensile strength 7MPa or more. The comparison of the North Korean truck luggage load(30, 40, 55) and the Korean standard KL-510 load showed that cross-section increased as the load increased. Furthermore, a bridge with a span length of 30m was fabricated with ultra-high performance concrete for the construction performance evaluation. The evaluation of the load condition analysis was performed by a flexural test. The results showed that a bridge with a span length of 30m secured about 167% of sectional performance under initial cracking load conditions and about 134% of load bearing capacity under ultimate load conditions. As a result of economic analysis, the customized bridge system using ultra-high-performance concrete was less than about 11% of the upper construction cost compared to the steel composite girder bridge. Therefore, these results suggest that the price competitiveness can be secured when applying the ultra-high-performance concrete long-span bridge developed through this study.

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

Evaluation on the Bending Behavior After Yield of RC Beam by Using Image Processing Method(I): Focused on the Compressive Part (영상 분석 기법을 이용한 RC 부재의 항복 후 휨 거동 분석(I): 압축부를 중심으로)

  • Kim, Kun-Soo;Park, Ki-Tae;Woo, Tae-Ryeon;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.39-46
    • /
    • 2022
  • As the limit state design method is applied as the design method of reinforced concrete structure, the ultimate state is considered when analyses or designing. In fact, when the reinforced concrete member is bent, there is a confining effect by stirrup, but the material curve of unconfined concretes applied when designing. In this study, to evaluate the suitability of the confined concrete model for flexural members, a 4-point bending test was conducted on RC simple beam with a double-reinforced rectangular cross-section, and the behavior of the member after yield was analyzed in detail using image processing method. For detailed analysis, the DIC method was adopted as an image analysis method, and the validity of DIC method was verified by comparing the measurement results with the LVDT. The distribution of the strain on the concrete surface calculated as a result of the DIC method could be obtained, and the average strain distribution of the cross-section was calculated. Using the average strain distribution, the stress distribution applied existing confined concrete model as a material curve could be derived. Through the comparison of the experimental results and the existing model application results, the suitability of the confined concrete model for RC flexural members having a rectangular cross-section was evaluated.

Temperature Dependence of Oxygen Diffusivity in the PVC Film on Gold Electrode Using Steady-State Rotating Disk Electrode Technique and Modulated Electrohydrodynamic Impedance Technique (정상상태 회전원판전극(RDE) 방법과 유체역학적 요동에 의한 전기화학적(EHD) 임피던스방법을 이용한 금전극표면에 형성된 PVC 피막내 산소확산계수의 온도의존성에 대한 연구)

  • Yeon Jei-Won;Pyun Su-Il;Lee Woo-Jin;Choi In-Kyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • In the present we.k, temperature dependence of oxygen diffusivity in the polyvinyl chloride (PVC) film $D_f$ formed on gold electrode was investigated using steady-state rotating disk electrode (RDE) technique and modulated electrohydrodynamic (EHD) impedance technique. Both the diffusion rate defined as the ratio of oxygen diffusivity in the PVC film to the film thickness $D_f/\delta_f$ and the time constant $\delta_f^2/D_f$ for oxygen diffusion through the PVC film were obtained from plot of the limiting current versus disk rotation speed and from filing the EHD impedance spectra experimentally measured to those theoretically calculated on the basis of the diffusion equation for mass transport through the non-conductive and porous film, respectively. By combining measured $D_f/\delta_f$ with $\delta_f^2/D_f$, we determined $\delta_f\;and\;D_f$ at room temperature separately. As temperature increased, it appeared that the $D_f$ value measured for the PVC film-covered gold RDE was enhanced more rapidly than that $D_s$ value in the solution measured for the PVC film-free gold RDE. This means that the pores glowing with increasing temperature act as effective diffusion paths within the film. The present in-situ steady-state and modulated EHD measurements prove to be effective for determining $\delta_f\;and\;D_f$, separately and at the same time the porosity of the PVC film at temperatures below glass temperature $T_g$ of the film.