• Title/Summary/Keyword: 극한 강우량

Search Result 102, Processing Time 0.018 seconds

Nitrogen Leaching and Balance of Soils Grown with Cabbage in Weighing Lysimeter (중량식 라이시미터에서 배추 재배에 따른 질소 용탈과 수지)

  • Lee, Ye Jin;Ok, Jung Hun;Lee, Seul Bi;Sung, Jwa Kyung;Song, Yo Sung;Lee, Deog Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.166-171
    • /
    • 2018
  • BACKGROUND: Nitrogen leaching depends on the drainage pattern and nitrate content, and those are influenced by soil hydraulic properties and fertility. The purpose of this study was to confirm how soil texture contributed to leaching and balance of nitrogen, as well as to drainage. METHODS AND RESULTS: This study was performed using undisturbed weighing lysimeters which were piled up with clay loam (Songjung series) and sandy loam (Sanju series) soils in National Institute of Agricultural Science experimental field. Chinese cabbage was cultivated from August 30 to October 31, 2017. The application rates of N, $P_2O_5$, and $K_2O$ were 21.5, 7.8, and $15.0kg\;10a^{-1}$, respectively, and irrigation was supplied at -33 kPa in 30 cm soil depth. Drainage in clay loam was not noticeable, although it was increased by rainfall in early September. By contrast, the trend of drainage in sandy loam was strongly dependent upon rainfall pattern. Owing to different drainage patterns between both soil textures, nitrogen leaching was 5-fold higher in sandy loam than in clay loam. Nitrogen use efficiencies in clay loam and sandy loam were represented as 43% and 52%, respectively. CONCLUSION: The pattern of drainage and nitrogen leaching were greatly depended on clay content in soil. From this study, we carefully suggest that soil texture should be considered as an incidental factor to estimate nitrogen balance.

Real-Time Flood Forecasting by Using a Measured Data Based Nomograph for Small Streams (계측자료 기반 Nomograph를 이용한 실시간 소하천 홍수량 산정 연구)

  • Tae Sung Cheong;Changwon Choi;Sung Je Yei;Kang Min Koo
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.116-124
    • /
    • 2023
  • As the flood damage on small streams increase due to the increase in frequency of extreme climate events, the need to measure hydraulic data of them has increased for disaster risk management. National Disaster Management Institute, Ministry of Interior and Safety develops CADMT, a CCTV-based automatic discharge measurement technology, and operates pilot small streams to verify its performance and develop disaster risk management technology. The research selects two small streams such as the Neungmac and the Jungsunpil streams to develop the Nomograph by using the 4-Parameter Logistic method using only the observed rainfall data from the Automatic Weather System operated by the Korea Meteorological Agency closest to the small streams and discharge data collected by using the CADMT. To evaluate developed Nomograph, the research forecasts floods discharges in each small stream and compares the result with the observed discharges. As a result of the evaluations, the forecasted value is found to represent the observed value well, so if more accurate observed data are collected and the Nomograph based on it is developed in the future, the high-accuracy flood prediction and warning will be possible.