• Title/Summary/Keyword: 극한좌굴

Search Result 65, Processing Time 0.02 seconds

Inelastic Buckling Analysis of Frames with Semi-Rigid Joints (부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.143-154
    • /
    • 2014
  • An improved method for evaluating effective buckling length of semi-rigid frame with inelastic behavior is newly proposed. Also, generalized exact tangential stiffness matrix with rotationally semi-rigid connections is adopted in previous studies. Therefore, the system buckling load of structure with inelastic behaviors can be exactly obtained by only one element per one straight member for inelastic problems. And the linearized elastic stiffness matrix and the geometric stiffness matrix of semi-rigid frame are utilized by taking into account 4th terms of taylor series from the exact tangent stiffness matrix. On the other hands, two inelastic analysis programs(M1, M2) are newly formulated. Where, M1 based on exact tangent stiffness matrix is programmed by iterative determinant search method and M2 is using linear algorithm with elastic and geometric matrices. Finally, in order to verify this present theory, various numerical examples are introduced and the effective buckling length of semi-rigid frames with inelastic materials are investigated.

Nonlinear Finite Element Analysis on Global and Distortional Buckling of Cold-Formed Steel Members (냉간성형강재의 전체좌굴 및 뒤틀림좌굴에 대한 비선형유한요소해석)

  • Kang, Hyun Koo;Rha, Chang Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper presents modelling approaches for the global and distortional buckling of cold-formed built-up steel sections using the finite element software packages, ANSYS and ABAQUS. Thin thickness of the cold-formed steel causes nonlinear behaviour due to local and distortional buckling, thus careful consideration is required in modelling for numerical analysis. Implicit static modelling using ANSYS provides unstable numerical results as the load approaches the limit point but explicit dyamic modelling with ABAQUS is able to display the behaviour even in post-buckling range. Meanwhile, axial load capacities obtained from the numerical analysis show higher values than the experimental axial capacities, due to eccentricity during the test. Axial capacities of the cold-formed steel obtained through numerical analysis requires reduction factor, and this paper suggests 0.88 for the factor.

Dynamics of disconnected risers under rigid and compliant hang-off (강성 및 컴플라이언트 행오프 하에서의 미연결송유관의 동력학)

  • Yoon, D. Y.
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.39-51
    • /
    • 1987
  • 석유시추 보호관의 비선형 운동을 시뮬레이트하는 유효한 해법이 non-uniform grid 유한차분법과 implicit time 적분법에 근거하여 제시되었다. 극한 상태에 있는 지지 플랫폼의 상승 가속도에 의해 생기는 보호관의 동적 좌굴형 반응에 관하여 상세히 연구되었고, 이 반응에 미치는 중요 변수가 규명되었다. 운동의 현저한 감소와 이에 따른 응력들이 컴플라이언트 행오프(hang-off)를 적용시킴으로써 얻어졌다.

  • PDF

A Study on the Structural Behavior and the Strength of Circular Hollow Steel(CHS) Section Columns (원형강관 기둥의 구조적인 거동 및 강도에 관한 연구)

  • Kang, Doo Won;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.505-514
    • /
    • 2009
  • This paper describes the structural behavior and the ultimate strengths of circular hollow steel (CHS) sections based on a series of compression tests. The ultimate strengths of CHS section columns are mainly dependent on both diameter-thickness ratio and column slenderness ratio. For the CHS sections with a high diameter-thickness ratio, an elastic or an inelastic local buckling may occur prior to the overall buckling, and it may decrease the column strength. Test sections were fabricated from SM400 steel plate of 2.8 mm and 3.2 mm in thickness and were tested to failure. The diameter-thickness ratios of the test sections ranged from 45 to 170 to investigate the effect of local buckling on the column strength. The compression tests indicated that the CHS sections of lower diameter-thickness ratio than the yield limit in the current design specifications showed an inelastic local buckling and a significant post-buckling strength in the local mode. Their ultimate stresses were larger than the nominal yield stress. It was known that the allowable stresses of the sections predicted by the Korean Highway Bridge Design Specifications (2005) were too conservative in comparison with test results. The Direct Strength Method which was newly developed was calibrated for application to the CHS sections by the experimental and numerical results. The Direct Strength Method proposed can predict properly the ultimate strength of CHS section columns whether a local buckling and an overall buckling occur nearly simultaneously or not.

Probabilistic finite Element Analysis of Eigenvalue Problem- Buckling Reliability Analysis of Frame Structure- (고유치 문제의 확률 유한요소 해석)

  • 양영순;김지호
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.111-117
    • /
    • 1991
  • The analysis method calculating the mean and standard deviation for the eigenvalue of complicated structures in which the limit state equation is implicitly expressed is formulated and applied to the buckling analysis by combining probabilistic finite element method with direct differential method which is a kind of sensitivity analysis technique. Also, the probability of buckling failure is calculated by combining classical reliability techniques such a MVFOSM and AFOSM. As random variables external load, elastic modulus, sectional moment of inertia and member length are chosen and Parkinson's iteration algorithm in AFOSM is used. The accuracy of the results by this study is verified by comparing the results with the crude Monte Carlo simulation and Importance Sampling Method. Through the case study of some structures the important aspects of buckling reliability analysis are discussed.

  • PDF

Elasto-Plastic Buckling Analysis Based on the Slope-Deflection Method (처짐각법을 이용한 선형부재의 탄소성 좌굴해식)

  • Cheong, Myung-Chae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.63-72
    • /
    • 2006
  • Fundamental equations of a member to analysis the elasto-plastic buckling analysis based on the deflection method are derived in this paper, and its validity and accuracy are shown by the numerical examples. The model discussing in the present paper has three elasto-plastic springs which are located at the both ends and center of a member and two elastic beam elements between them. The elasto-plastic springs represent the elasto-plastic behavior of the member and elastic beam element represents buckling behavior of the member. Numerical example shows the validity of this formulation.

  • PDF

Study on Section Properties of Deckplates with Flat-Hat Stiffners (Flat-Hat 스티프너를 가진 데크플레이트의 단면 성능에 관한 연구)

  • Ju, Gi-Su;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.77-86
    • /
    • 2004
  • It is the buckling of the compression portions of the deckplate that govern its behaviour under wet concrete construction loading. The size and position of intermediate stiffeners in the compression flanges of thin-plate steel decks exert a strong influence on the dominant buckling mode of the flange. Test sections composed of high-strength steel were brake pressed with a variety of Flat-hat intermediate stiffeners in the compression flange forming a progression from small to large stiffeners. The ABAQUS program to determine the effectiveness of intermediate stiffeners in controlling buckling modes is undertaken. A series of specimens are loaded with simple beam. Various buckling wave forms prior to ultimate failure through a plastic collapse mechanism. The experimentally determined buckling stresses are found to be comparable with studies performed using the ABAQUS program analysis and using each country code.

  • PDF

Ultimate Flexural Strength of Cylindrical Steel Shell for Wind Tower (풍력발전 타워용 원형단면 강재 쉘의 극한휨강도)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.109-118
    • /
    • 2015
  • Ultimate flexural buckling strength of cylindrical steel shells for the wind turbine tower structure was investigated by applying the geometrically and materially nonlinear finite element method. The effects of initial imperfection, radius to thickness ratio, and type of steel on the ultimate flexural strength of cylindrical shell were analyzed. The flexural strengths of cylindrical shells obtained by FEA were compared with design flexural strengths specified in Eurocode 3 and AISI. The shell buckling modes recommended in DNV-RP-C202 and the out-of-roundness tolerance and welding induced imperfections specified in Eurocode 3 were used in the nonlinear FE analysis as initial geometrical imperfections. The radius to thickness ratios of cylindrical shell in the range of 60 to 210 were considered and shells are assumed to be made of SM520 or HSB800 steel.

A Study on the Geometric Nonlinear Behaviour of Ship Plate by Energy Method (에너지법에 의한 선체판의 기하학적 비선형거동에 관한 연구)

  • Jae-Yong Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.94-104
    • /
    • 1999
  • Plate buckling is very important design criteria when the ship is composed of high tensile steel plates. In general, the plate element contributes to inplane stiffness against the action of inplane load. If the inplane stiffness of the plating decreases due to buckling including the secondary buckling, the flexural rigidity of the cross section of a ship's hull also decreases. In these cases, the precise estimation of plate's behaviour after buckling is necessary, and geometric nonlinear behaviour of isolated plates is required for structural system analysis. In this connection, the author investigated the geometric nonlinear behaviour of simply supported rectangular plates under uniaxial compression in the longitudinal direction in which the principle of minimum potential energy method is employed. Based on the energy method, elastic large deflection analysis of isolated palate is performed and simple expression are derived to discuss the bifurcation paint type buckling and limit point type buckling.

  • PDF

크레인 하중을 받는 강재 격납구조물의 안전성 평가

  • 서용표;김우범;이경진;송윤수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.844-850
    • /
    • 1998
  • 본 연구에서는 개방구(opening)을 갖는 원자력발전소 강재 격납구조물의 내력을 평가함에 있어서 기존의 실용 구조설계에 적용된 개구부가 없는 원통형 쉘의 좌굴 판정 기준이 적절하지 않음을 밝혔으며, 대안으로서 개방구(opening)를 갖는 원통형 강재 격납구조물의 재료적 비선형과 기하학적 비선형을 고려한 극한 내력 해석을 수행함으로써 중기발생기 교체작업시 유발되는 인양 하중에 대한 격납구조물의 구조적 안전성을 평가하였다. 개방구를 갖는 격납구조물에 대하여 stiffner가 있는 상태에서 크레인 하중에 대한 극한 내력을 평가해본 결과 크레인 하중이 재하될 경우, 구조물이 선형 탄성 범위에 있는 것으로 확인되었으며 개방구 주위의 국부적인 항복응력도달 상태에 대하여 10.8의 안전율을 확보 할 수 있는 것으로 계산되었다. 본 연구를 통하여 제시된 개방구를 갖는 강재 격납구조물의 극한내력 평가 방법은 유사 구조물의 구조건전성 평가에 활용될 수 있을 것으로 사료된다.

  • PDF