• Title/Summary/Keyword: 극초소형 위성

Search Result 11, Processing Time 0.019 seconds

On-orbit Analysis of Power Generation Efficiency of Concentrating Photovoltaic System Using Commercial Fresnel Lens for Pico Satellite Applications (상용 프레넬렌즈를 이용한 극초소형 위성용 집광형 태양전력 시스템의 궤도 전력생성효율 분석)

  • Park, Tae-Yong;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.318-325
    • /
    • 2015
  • Pico satellite has limited surface to install the solar cells due to its extremely limited size. Also, the sun incidence angle with respect to the solar panel continuously varies according to the attitude control strategy and its important parameter for the power generation. In this study, a concentrating photovoltaic system for pico satellite application has been proposed that can enhance the power generation efficiency in case of the unfavorable condition of the sun incidence angle with respect to the solar panel of the satellite using the fresnel lens. To prove the possibility of maximizing the power generation efficiency of the proposed concentrating power system, we have performed the power measurement test using a solar simulator and commercial fresnel lens. And on-orbit analysis of the power generation efficiency using the STK which is a commercial S/W has also been performed based on the test results.

Experimental Investigation of Concentrating Photovoltaic System Applying Commercial Multi-array Lens for Space Applications (상용 배열형 렌즈를 적용한 집광형 태양전력시스템의 우주 적용 가능성 실험적 검토)

  • Park, Tae-Yong;Chae, Bong-Geon;Lee, Yong-Geun;Kang, Suk-Joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.622-627
    • /
    • 2014
  • A pico-class satellite has limitation to generate power from the solar cells due to its limited accommodation area to install the solar cells. The variation of incidence angle between solar panels and sunlight induced by the revolution and rotation of the satellite is one of the key parameters to determine the power generation. In this study, we proposed a concentrating photovoltaic system for pico-class satellite applications to enhance power generation when the ${\beta}$ angle between the sunlight and the solar panel is zero by effectively concentrating solar energy on solar panels. The feasibility of the conceptual idea has been demonstrated by power measurement test using solar simulator and commercial multi-array lens system.

Performance and Thermal Design Validation for FM STEP Cube Lab. (큐브위성 STEP Cube Lab. 비행 모델의 열진공시험을 통한 성능 및 열제어계 설계 검증)

  • Kang, Soo-Jin;Jung, Hyun-Mo;Seo, Joung-Ki;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.814-821
    • /
    • 2015
  • The STEP Cube Lab. classified as a pico-class satellite has been successfully developed as a flight model(FM) to be launched in 2015. Its mission objective is to perform the on-orbit verification of fundamental space core-technologies. In this study, a thermal design concept based on the passive method to achieve the mission objective is introduced. The effectiveness of the thermal design and performance of the satellite has been verified through the acceptance level thermal vacuum test. In addition, to improve the reliability of thermal mathematical model, correlation was performed using the results of thermal balance test. This paper describes a series of process for the thermal vacuum test on the STEP Cube Lab. FM.

On-orbit Thermal Analysis of Pico-class Satellite STEP Cube Lab. for Verification of Fundamental Space Technology (우주기반기술 검증을 위한 극초소형 위성 STEP Cube Lab.의 궤도 열해석)

  • Kang, Soo-Jin;Ha, Heon-Woo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.795-801
    • /
    • 2014
  • STEP Cube Lab. classified as a pico-satellite has been being developed by SSTL(Space Technology Synthesis Laboratory) in Chosun University. Its main mission objective is to perform the on-orbit verification of core space technologies, which will be the potential candidates for future space missions. In this paper, to guarantee successful mission operation of the cube satellite under extremely severe space thermal environment condition, the system level thermal design and analysis has been performed. The effectiveness of the design has been verified through on-orbit thermal analysis of cube satellite.

Functional Verification of the Solar Panel Separation Mechanism for Pico-Class Satellite Applications Using Spring-loaded Pogo-pin (포고핀을 활용한 극초소형 위성용 태양전지판 분리장치의 기능검증)

  • Kim, Su-Hyeon;Jeon, Young-Hyeon;Kim, Hong-Rae;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.69-75
    • /
    • 2018
  • In this study, we proposed a nylon wire cutting-type solar panel separation mechanism for CubeSat applications using spring-loaded pogo-pins, which has been widely used as temporary electrical interface between two separate electronics. The mechanism proposed in this study has great advantages of higher holding capability, ability to constrain along in-plane and out-of-plane directions of solar panels, simplicity in tightening of nylon wire and synchronous separation of multiple panels. In addition, the pogo-pins used for the proposed mechanism act as electrical power interface, separation status switch and separation spring. In this study, the functionality of the proposed mechanism was validated through the separation tests with various number of nylon wire windings.

Preliminary System Design of STEP Cube Lab. for Verification of Fundamental Space Technology (우주기반기술 검증용 극초소형 위성 STEP Cube Lab.의 시스템 개념설계)

  • Kwon, Sung-Cheol;Jung, Hyun-Mo;Ha, Heon-Woo;Han, Sung-Hyun;Lee, Myung-Jae;Jeon, Su-Hyeon;Park, Tae-Young;Kang, Su-Jin;Chae, Bong-Gun;Jang, Su-Eun;Oh, Hyun-Ung;Han, Sang-Hyuk;Choi, Gi-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.430-436
    • /
    • 2014
  • The mission objective of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) classified as a pico-class satellite is to verify the technical effectiveness of payloads such as variable emittance radiator, SMA washer, oscillating heat pipe and MEMS based solid propellant thruster researched at domestic universities. In addition, the MEMS concentrating photovoltaic power system and the non-explosive holding and separation mechanism with the advantages of high constraint force and low shock level will be developed as the primary payloads for on-orbit verification. In this study, the feasibility of the mission actualization has been confirmed by the preliminary system design.

Performance Investigation of Attitude Determination Control for Cube Satellite Using Permanent Magnet Stabilization Method (영구자석 안정화 방식을 적용한 극초소형 위성의 자세제어 성능분석)

  • Ha, Heonwoo;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • Passive attitude stabilization method has been widely used for attitude determination and control of cube satellite due to its advantage of system simplicity. In this paper, permanent magnet stabilization method for application of cube satellite attitude control has been introduced and its performance with and without hysteresis damper system has been investigated through a numerical simulation. The simulation results indicate that the permanent magnet stabilization combined with hysteresis damper shows much higher stabilization performance than the system without damper system.

Performance Verification of Hinge Driving Segmented Nut Type Holding and Release Mechanism for Cube Satellite Applications (큐브위성용 힌지 구동형 분리너트식 구속분리장치의 실험적 성능검증)

  • Oh, Hyun-Ung;Lee, Myeong-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.529-534
    • /
    • 2014
  • Pyrotechnic devices are widely used for space appendages. However, a cube satellite requirements do not permit the use of explosive pyrotechnic device. A nichrome burn wire release has typically been used for holding and release of deployable appendages of the cube satellite due to its simplicity and low cost. However, relatively low mechanical constraint force and system complexity for application of multi-deployable systems are disadvantages of the conventional mechanism. To overcome these drawbacks, we developed a hinge driving segmented nut type holding and release mechanism based on the nichrome burn wire release. The functional performance of the mechanism has been verified through release function test, static load test and shock level measurement test.

Performance Verification of Separation Nut Type Non-explosive Separation Device for Cube Satellite Application (큐브위성 적용을 위한 분리너트형 비폭발식 구속분리장치 인증모델의 성능검증)

  • Oh, Hyun-Ung;Lee, Myeong-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.827-832
    • /
    • 2013
  • Heating wire cutting type separation mechanism has been widely used for cube satellite applications due to its design constraints such as small size of $10cm{\times}10cm{\times}10cm$ and light weight of less than 1kg. In addition, usage of pyro technic device is not allowed for cube satellite application. The conventional methods have some disadvantages of relatively small mechanical constraint force and the system complexity for the multi-deployable systems. In this paper, a separation nut type non-explosive separation mechanism has been proposed and investigated. The effectiveness of the design has been verified through the qualification tests of the mechanism.

Life Prediction of Failure Mechanisms of the CubeSat Mission Board using Sherlock of Reliability and Life Prediction Tools (신뢰성 수명예측 도구 Sherlock을 이용한 큐브위성용 임무보드의 고장 메커니즘별 수명예측)

  • Jeon, Su-Hyeon;Kwon, Yae-Ha;Kwon, Hyeong-Ahn;Lee, Yong-Geun;Lim, In-OK;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.172-180
    • /
    • 2016
  • A cubesat classified as a pico-satellite typically uses commercial-grade components that satisfy the vibration and thermal environmental specifications and goes into mission orbit even after undergoing minimum environment tests due to their lower cost and short development period. However, its reliability exposed to the physical environment such as on-orbit thermal vacuum for long periods cannot be assured under minimum tests criterion. In this paper, we have analysed the reliability and life prediction of the failure mechanisms of the cubesat mission board during its service life under the launch and on-orbit environment by using the sherlock software which has been widely used in automobile fields to predict the reliability of electronic devices.