• Title/Summary/Keyword: 극점배치

Search Result 52, Processing Time 0.039 seconds

Design of Controller Using the Piezo Actuator (피에죠 엑츄에이터를 이용한 나노 구동 제어기 설계)

  • 유상훈;이충우;서상민;정정주;김대용
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2811-2814
    • /
    • 2003
  • 본 논문에서는 Sub-nano 수준의 위치정밀도와 분해능을 갖는 Piezo actuator 의 제어기 설계를 목적으로 하였다. 이산 시간 상태 공간에서의 Piezo actuator를 이용한 1 축 스테이지 드라이브 시스템 SISO 제어기를 설계하였다. Piezo actuator 의 소재 자체의 특성으로는 Hysteresis 가 있으며, 이는 정상상태에서 Piezo actuator 의 위치 오차를 발생하는 주요 원인이 된다. 제어기의 설계는 극점 배치 방법을 기본으로 하여 Hysteresis 에 대한 보상을 목적으로 적분제어방식과 외란 추정기를 각각 적용하였다. 모의실험을 통하여 제어기의 설계 및 시뮬레이션 하였으며, Hysteresis 에 대한 보상이 이루어짐을 보았고, 실험을 통하여 이를 증명하였다.

  • PDF

Linear Quadratic Control with Pole Placement for an Automotive Active Suspension System (극점배치기능을 갖는 LQ제어기 설계 및 자동차 능동 현가장치 제어에의 응용)

  • 최재원;서영봉;유완석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.513-517
    • /
    • 1995
  • In this paper, a relation of matrix Q in cost function to distances between the closed-loop and open-loop poles of a multi input controllable systems is studied. Futhmore, the state feedback gain with exact desired eigenvalues in the LQR is computed. The proposed scheme is applied to designing automotive active suspension control system for a half-car model and its performance is compared with the existing LQR control system design methodology.

  • PDF

Robust Pole Assignment Design for Linear Time-varying Uncertain Systems using LMI (LMI 기법을 이용한 시변 불확정성 선형 시스템의 강인 극점 배치 설계)

  • Kim, Jae-Sung;Ma, Sam-Sun;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.491-493
    • /
    • 1999
  • In this paper, we consider the design of robust pole assignment for linear system. Considered uncertainty is time-varying uncertainty. Based on Lyapunov stability theorem and linear matrix inequality(LMI) we present the design result for pole assignment. Finally, we give some numerical examples to show the applicability and usefulness of our presented results.

  • PDF

Development of a simplified pole-placement design using swtching dynamics (스위칭 다이나믹을 이용한 단순화된 극점 배치 기법의 개발)

  • 박귀태;김동식;서삼준;서호준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.947-952
    • /
    • 1993
  • A simplified pole-placement design method is developed by analysing dynamic characteristics of the switching dynamics. Unlike the design procedure of conventional pole-placement, in the proposed method, overall state-space is directly decomposed into two invariant subspaces by the projection operator which is defined in the equivalent system, and then the closed-loop poles are assigned to each subspace independently. Hence, computations for state-feedback gain matrix are easy and simple.

  • PDF

Mixed $H^2/H^\infty$ Controller Design with Regional Pole Placements for Underwater Vehicle (수중운동체의 극점 배치를 갖는 혼합 $H^2/H^\infty$ 제어기 설계)

  • 조용철;김종해박홍배
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.219-222
    • /
    • 1998
  • This paper presents the Mixed H2/H$\infty$ controller design method with the regional pole placements for underwater vehicle. Since the small and light underwater vehicle is sensitive to disturbances and parameter uncertainties, we design the controller which guarantees robustness against time-delays, parameter uncertainties and disturbances. The LMI(linear matrix inequality) formulations for pole placements in specific regions and H2 and H$\infty$ performances are reviewed. The desired controller can be obtained by solving these LMIs.

  • PDF

Robust Pole Assignment of Uncertain Linear Systems (불확정성 선형 시스템의 강인 극점 배치)

  • Kim, Jae-Sung;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.589-591
    • /
    • 1999
  • In this paper, we consider the robust pole assignment for linear system with time-varying uncertainty. The considered uncertainty is an unstructured uncertainty. Based on Lyapunov stability and linear matrix inequality technique, we present a condition that guarantees the robust pole assignment inside a circular disk and the robust stability of uncertain linear systems. Finally, we show the usefulness of our results by an example.

  • PDF

A study on optimal variable pole assignment self-tuning control (최적 가변 극점 배치 자기동조 제어에 관한 연구)

  • 전종암;조병선;박민용;이상배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.246-249
    • /
    • 1988
  • In this paper, a new design technique which uses weighted least-sqare approach for the solution of the pole assignment problem is represented. This technique maybe used to assign some closed loop poles to places which reduce the large system input and output variance due to near pole-zero condition. The least-square approach is also applied to the design of servo self-tuning controller with integrator.

  • PDF

Pole placement self-tuning control of robot manipulators (극점 배치 자기 동조에 의한 로보트 매니퓰레이터 제어)

  • 이종용;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.32-35
    • /
    • 1987
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a desired trajectory in spite of the presence of nonlinearties and parameter uncertainties in robot dynamic models. In this paper, an adaptive control scheme for a robot manipulator is proposed to design the self-tuning controller which combines the pole placement with the extended linearized perturbation model. And this control scheme has two components: a feadforward control and a feedback compensation control. Based on this, the controller is demonstrated by the simulation about position control of a three-link manipulator with payload and parameter uncertainty.

  • PDF

A Study on Reduced Variance Self-Tuning Algorithm Using a Variable Forgetting Factor (시변 망각 인자를 사용하는 최소 자승 추정의 극점 -배치 자기동조 알고리즘에 관한 연구)

  • Park, Chan-Young;Do, Mi-Sun;Park, Mi-Gnon;Lee, Sang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.305-308
    • /
    • 1988
  • Pole assignment controller with variable forgetting factor is generalizaed to allow the output and/or input variance to be reduced. The algorithm can give significant reductions in variance for little extra computational effort and is presented for servo-tracking using leat-squares estimation. Moreover, the use of a variable forgetting factor with correct choice of information bound can avoid 'blowing-up' of the covariance matrix of the estimates and subsequent unstable control.

  • PDF

Adaptive Pole-Placement and Self-Tuning Control for a Robotic Manipulator (적응 극점 배치 및 자기동조 제어 방법에 의한 로보트 매니퓰레이터 제어)

  • 이상효;양태규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.9
    • /
    • pp.655-662
    • /
    • 1988
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a deired trajectory in spite of the presence of nonlinearies and parameter uncertainties in robot dynamic models. In this paper, an adaptive control scheme for a robot manipulator is proposed to design the self-tuning controller which controls the extended linearized perturbaton model via the pole placement, and this control. The feasibility of the controller is demonstrated by the simulation about position control of a three-link manipulator with payload and parameter uncertainty.

  • PDF