• Title/Summary/Keyword: 극저온공학

Search Result 181, Processing Time 0.024 seconds

Analysis and Experiment on Cryogenic Refrigeration Using Solid Nitrogen (고체 질소를 이용한 극저온 냉동의 해석 및 실험)

  • 변정주;이윤숙;장호명
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.77-83
    • /
    • 2001
  • The thermal characteristics of solid nitrogen are investigated by experiment and analysis for the purpose of evaluating its feasibility as a cooling medium for HTS (high T$_{c}$ superconductor) magnets. A cryostat to refrigerate a liquid-nitrogen container well below its freezing temperature with a 2-stage GM cryocooler is designed and constructed. The spatial distribution of temperature is measure as a function of time during the freezing and melting processes. from which the thermal diffusivity of solid nitrogen can be approximately calculated. the freezing process is formulated and solved by the integral method with an assumption of phase equilibrium at the solid-liquid interface and experimental observation. It may be concluded that the thermal diffusion in solid phase is much slower than in liquid and the degree of super-saturation is quite severe in the solidification of nitrogen.n.

  • PDF

Experimental of the Rotaing Cryogenic System (회전하는 극저온 시스템의 단열 특성에 관한 실험적 연구)

  • 이창규;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • A rotating cryogenic system was designed similar to the cooling system for the rotor of a superconducting generator. The experimental rotor has an inner vessel which simulates the winding space of an actual superconducting rotor, and a torque tube of comparable design. This paper describes the evaluation of the total heat leak into the inner vessel that leads to the study of the heat transfer characteristic of the rotating cryogenic system. To examine the insulation performance of the experimental rotor. temperature was measured at each part of the system at various rotaing speeds from 0 rpm to 600 rpm. Total heat leak into the inner vessel was calculated by measuring the boil-off rate of liquid helium. Conduction heat leak to the inner vessel was obtained by the vent tube, and radiation heat leak was calculated by subtracting the conduction heat lent from the total heat leak. There seemed to be no rotaional dependency of total heat leak at least up 600 rpm.

  • PDF

Design of Reverse Brayton Cycle Cryocooler System for HTS Cable Cooling (HTS 케이블 냉각용 역브레이튼 사이클 극저온 냉동기 설계에 관한 연구)

  • 박재홍;권용하;김영수;박성출
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.58-65
    • /
    • 2003
  • The high temperature superconductivity(HTS) cable must be cooled below the nitrogen liquefaction temperature to applicate the cable in power generation and transmi-ssion system under the superconducting state. To obtain superconducting state. a reliable cryocooler system is required. Structural and thermal design have been performed to design cryocooler system operated with reverse Brayton cycle using gas neon as refrigerant. This cryocooler system consists of compressor. recuperator. coldbox. control valves and has 1 kW cooling capacity. Heat loss calculation was conducted for the given cryocooler system by considering the conduction and radiation through the multi-layer insulation(MLI) and high vacuum. The results can be summarized as: conduction heat loss is 7 W in valves and access port and radiation heat loss is 18 W through the surface of cryocooler. The full design specifications were discussed and the results were applied to construct in house HTS cable cooling system.

The effection of alloying elements on welding characteristics of stainless steel (스테인리스강의 용접 특성에 미치는 합금원소의 영향)

  • 정호신;배동수;엄동석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.16-23
    • /
    • 1997
  • Stainless steel are widely applicable in various engineering fields for its exellent corrosion and impact ressistance. Austenitic weld metal has some ferrite for preventing solidification cracking by ASME specification. Several family of austenic stainless steel contains varying ferrite contents. But ferrite in austenic stainless steels is adversely affect weld metal toughness and since fully austenic grades are known to have good toughness. Austenic stainless steel has various alloying addition for improving corrosion resistance, impact toughness and solidification crack resistance. The effect of various alloying elements are not found to be clear in present. From this view of point, this study tried to establish the criteria of alloy design for austenic stainless steel by controlling primary solidification mode and clarifying the effect of several alloying elements.

  • PDF

Study of the Dependency of the Stirling Cryocooler′s Thermodynamic Performance on the Operating Frequency (스터링 극저온 냉동기 성능의 운전주파수 의존성에 관한 연구)

  • 홍용주;박성제;김효봉;유병건;최영돈
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.140-144
    • /
    • 2002
  • A free piston and free displacer (FPFD) Stirling cryocooler has been widely used for the cooling infrared and cryo-sensor. The thermodynamic performance of the free piston and free displacer type (FPFD) Stirling cryocooler is highly dependent on the operating frequency of the linear compressor and the natural frequency of the displacer. In this study, to find optimal relation between operating and natural frequency of the displacer the dynamic characteristics of the displacer in the expansion space of the Stirling cooler was investigated by experiment. The experimental results show that the Stifling cryocooler has maximum cooling capacity at the operating frequency of about 0.8 times of the natural frequency of displacer. Therefore the operating frequency of the Stirring cryocooler should be determined by natural frequency of the linear compressor and displacer.

Effects of Pressure on the Breakdown Characteristics of Cryogenic Liquid and Gaseous Nitrogen (극저온 액체 및 기체 질소의 압력에 따른 절연파괴 특성)

  • 백승명;정종만;김상헌
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.1-4
    • /
    • 2002
  • Electrical properties of liquid nitrogen ($LN_2$) and gaseous nitrogen($GN_2$) have become of great interest again since the discovery of high temperature superconductors . It is very important from a point of superconducting apparatus protection to elucidate breakdown characteristics in $LN_2$ and $GN_2$ at atmospheric and pressurized conditions Therefore. this paper studies the effect of pressure on the breakdown characteristics in $LN_2$ and $GN_2$. Af high voltage is applied to electrode system with uniform and non-unform field in various gap length. And Breakdown voltages of $LN_2$ and $GN_2$ are investigated under AC voltage for Pressure ranging from 0 and 0.5 MPa. This research presented basis information of electrical insulation design for liquid nitrogen immersed HTS power apparatus.

Numerical Analysis on the Transient Cooling Characteristics of an Infrared Detector Cryochamber (적외선 센서 냉각용 극저온 용기의 과도 냉각 특성에 관한 수치해석)

  • 이정훈;김호영;강병하
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.68-72
    • /
    • 2002
  • This work investigates the transient cooling characteristics of an Infrared (IR) detector cryochamber, which has a critical effect on the cooling load. The current thermal modeling considers the conduction heat transfer through a cold well. the gaseous conduction due to outgassing. and the radiation heat transfer. The transient cooling Performance. i.e. the penetration depth and cooling load, is determined using a finite difference method. It is found that the penetration depth increases as the bore conductivity increases. Gaseous conduction and radiation hardly affect the penetration depth. The transient cooling load increases as the bore conductivity increases. The effects of gaseous conduction and radiation on transient heat transfer are weak at initial stages of cooling. However, their effects become significant as the cooling Process Proceeds.

A Comparative Study between Green's Function Method and Fourier Transform Method in Determining Thermal Wave Characteristics (열전도파 특성을 위한 Green's 함수법과 Fourier 변환법의 비교 연구)

  • Park, S.K.;Lee, Y.H.;Lim, J.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.16-24
    • /
    • 2000
  • 고체내의 열에너지의 전달을 분석하기 위하여 고전적인 Fourier 열전도 법칙과 에너지 보존식에서 유도되는 열전도 방정식을 사용해 왔다. 이러한 열전도 방정식은 열전도가 무한한 속도로 진행된다는 것을 의미하고 있다. 그러나 극저온상태에서나 매우 급속한 열전도과정 중 매우 짧은 시간의 상태에서 non-Fourier 모델에 기초를 둔 쌍곡선형 열전도 방정식이 도입되었다. 최근의 이에 관한 연구에서 열전도가 파장의 형태로 유한한 전파속도를 갖는다는 것이 실험적으로 증명되었고 이로부터 여러 가지 실험적인 해석과 이론 해석이 전개되었다. 본 논문에서는 열전파 속도의 유한한 성질을 나타내는 수정된 열전도 법칙을 이용하여 1차원 평판에 대하여 공간에 대한 finite Fourier 변환 방법과 Green 함수 방법으로 해석하여 열전도파의 파동 성질, 공진 현상 및 위상차를 고찰하고자 한다. 열전도파가 갖는 모달 주파수에 대해 임계값을 갖으며 이 임계값을 초과할 때 공진 현상과 위상차를 고찰할 수 있었다.

  • PDF

Design of cryogenic(4.2K) X-band HEMT oscillator for josephson voltage standard (조셉슨 전압 표준을 위한 극저온(4.2K) X-밴드 HEMT 발전기의 설계)

  • 이문규;남상욱;엄경환;김규태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.3
    • /
    • pp.1-10
    • /
    • 1998
  • A new oscillator configuration is presented and tested for Josephson voltage standard operated at the cryogenic(4.2K) temperature. Features of active devices are investigated in aspects of 1/f noise, output power, and current collapse at low temperature. The output power of oscillator is optimized by a nonlinear design approach called Harmonic Two Signal Method(HTSM). The embedding newworks of the generalized six oscillators with tow loads are derived. A HEMT oscilliator is designed in X-Band for the Josephson voltage standard and tested at room and cryogenic(4.2K) temperatures. Oscillation frequency, output power, C/N ratio, and fequency stability are compared at room and low temperatures.

  • PDF

Optimum Design Condition of the Collins Cryocooler (Collins 내동기의 최적 설계조건)

  • Lee, S.W.;Kim, S.Y.;Jung, P.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.183-190
    • /
    • 1992
  • The Collins cryocooler is numerically analysed with the optimization technique, and the optimum operating and design conditions are searched. This paper shows that liquefied helium quantity has an external maximum w.r.t. the total mass flow rate, the mass flow rates through expander and the capacities of heat exchangers. The liquefied helium quantity increases as the compressor exit pressure of the cryocooler does. The maximum quantity of liquefied helium and the maximum coefficient of performance have been found to exist in extremum, depending on the ratios of each heat exchanger capicities to the total one. At the optimum condition, the capacity of heat exchanger in high temperature region is larger than that in low temperature region.

  • PDF