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A Comparative Study between Green’s Function Method and
Fourier Transform Method in Determining Thermal Wave
Characteristics

W™ T u

Jm

M2 28t Green's &Y Fourier B o] Hjlw HF

S. K. Park, Y. H. Lee and J. H. Lim

ST - 0l8% - A

Key Words : Thermal Wave(€ A X 3}),
Phase Lag(H3A <)

Resonance(& %),

Thermal Relaxation Time(3 o] A,

8 o mAUYY FouAe DG A3 Astd ML Fourier FAE PH A} oix] BRI
AN FEHE GHE WA Abgs] gtoh oj2ld ddE HAH L dHEs 7Y SE2 JPdn
B AL gustn Aok 28y FAAHAAY of¢ F53 AUERY T oo FS A Al
A non-Fourier &0 7128 & #34¥ Edx WA Yol =YHAUATG. HZ 9 oo #F A7l &
Ax7t 4o g2 {3 AoEEE gteve Ao d¥Aes FHHUL oI2RH A8 7HA A

=]
=i

g7 sS4 ojg Aol WAHUL B

IME @ds Sxe) 588 442 dele £49

AAE WAL ol g3tel 149 Fdol dhakod Frol th@ finite Fourier W& WY F Green &5 WY
oz e AdEse] BE 4, FA AN L 9AANE nFRA Bk GAENt 2 B

o] da) AARE Row o YARS AT W T AN AYAE 1IY

1. INTRODUCTION

The heat
conventionally used assumes that any thermal

Fourier's law of conduction
disturbance on a body propagates at an infinite
speed. In practice, thermal wave speed is very
high; that is, for metals under room temperature
the thermal wave speed would be in the order
of 10° to 10° m/s.

the temperature distribution resulting from the

Therefore, the analysis of
Fourier's law of heat conduction agrees well
with most actual phenomena. However, it is not
easy for the Fourier's law to be applied to the
analysis at cryogenic temperatures in extremely

short periods of time due to a finite speed of

heat propagation. The eXperiment to detect a
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thermal wave with a finite speed of heat
propagation was carried out by Peshkov' and
the thermal wave speed for liquid Helium II at a
temperature of 1.4 K is 19 m/s in his work.
This phenomenon was called “second sound”, by
reason of an analogy between thermal waves
and ordinary acoustic waves. Kaminski® showed
that for the

traditional

speed (C) and the thermal relaxation time ()

sand specimen measured by

thermocouples, the thermal wave
are 0.143 mm/s and 20 second, respectively.

non-Fourier’s
heat
propagation, Cattaneo” and Vernotte® postulated

a modified heat flux model:

In order to explain the

phenomena with a finite speed of

TG 0+2L G =Y T

where q(_;, t) is the heat flux vector and £ is
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the The
represents a time lag, which exists between the

thermal conductivity. constant T
heat flux built up at a later time due to the
insufficient time of response and the temperature
gradient established in a material volume. If the
relaxation time approaches zero, Eq. (1) becomes
the classical Fourier’s heat conduction model
with an infinite speed of heat propagation.

The modified heat that

involves rapid temperature changes plays an

conduction law
important role for a better understanding of new

phenomena, such as laser annealing, laser
surface hardening by high-power short-pulse
lasers, rapid melting, rapid thermal processing of
thin films and the heat-conduction problems at
the

phenomena of thermal wave model possess a
5,6.7)

extreme temperature gradients. Since

behavior like a damped wave, recent works™

focus attention on the research about the
thermal resonance and damping.
In this paper, to analyze the frequency

characteristics of thermal waves in a finite
medium, the thermal wave model resulting from
combining the modified heat conduction equation
with the energy conservation equation is applied
to the Green’s function method together with
the integral transform pair and also transformed
by using a finite Fourier sine transform. The
transformed temperature distributions, therefore,
are obtained from the thermal wave equation by
the two different methods.

resonance characteristics and the phase lags,

To investigate the

boundary surfaces which are being periodically
heated on one side and insulated on the other
are considered.

2. PROBLEM FORMULATION

In a one-dimensional slab, the modified heat
flux law, Eq. (1),
degenerates into the following form:

involving the relaxation time

(x D+ qg(x, t)“—-k (x D. (2)

The energy conservation equation in a one-

dimensional situation can be written as

ad ad
—*a%(x, D+ glx, t)=pC,—§%—(x, D, (3

where g is an inner heat source function, p is

the mass density and C, is the specific heat

of the solid medium. The heat flux
representation is obtained by eliminating the
temperature 7 from Eqgs. (2) and (3). The

resulting equation is called the thermal wave
equation with no heat source term and may be
expressed as

“i ..____(L
O(x(l, 0. (4)
where @« is the thermal diffusivity. C is the

thermal wave speed that represents the rate of
the thermal diffusivity to the thermal relaxation
time as follows.

=4 (5)
T

For simplicity in this analysis, thermal properties
used here are assumed to be constant and also
no volumetric heat source is in the finite slab.

This situation can be found out in many
engineering applications by the use of
D —
——p
B ———
|
g(0.0 =g, —» g(x,1) q(.)=0
—
—>
D —
—
l L.
f — X

0 )
Fig. 1 Schematic of the periodic surface heating
problem
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very short pulse laser heating. The boundary
and initial conditions are expressed as

a0, )= g,e ", (6a)
al, =0, t>0, (6b)
qa(x,0)=0, (6c)
—Q(x 0=0,  0<x </, (6d)
where ¢, is a factor corresponding to the

incident amplitude at the surface x=0.

For convenience in the subsequent analysis,
dimensionless vanables are defined as

1= S5 om= S (Ta)
&= g—?, (7b)
Qn o = L&, (7¢)
where T .4 1s the reference temperature. It is

=g,/ (Ck/a)

convenience. In the case of no surface heating,

chosen as T .= in this work for

the reference temperature could be taken into

account as T .= T, Under these dimensionless

forms, the dimensionless surface heat flux
frequency, @, , can be  expressed as
w,=2af2/C?. Introducing the dimensionless

(7Ta-7c) into Eq. (4),
we can express the following governing equation

quantities defined in Egs.

and its boundary and initial conditions in terms
of the above dimensionless variables as

2%Q 0Q

»0, £0 (8)

Q(0, &) = exp(iv,8), (9a)
Q(7,,8) =0, &> 0, (9b)
Q(7,0 =0 (9¢c)
%g(%O) =0, 0<p<{n. (9d)
Since this dimensionless thermal wave

equation, Eq. (8), with heat flux is the same
formulation as a damped wave equation, we can
see that the thermal wave vyields resonance
characteristics and phase lag. The solution of
this

section.

system is developed in the following

3. ANALYSIS

3.1 Green's Function Method

The thermal wave in a finite medium with a
periodically heated surface has phase lag and
resonance characteristics which depend on the
heating frequency. In order to investigate these
phenomena, we applied the Green’s function to
the dimensionless thermal wave equation, Eq.

(8), as follows:

Ete Al
Jo o] Gn €1, 6L Qldn, g,

fh”f QL G(9, & | 70, £0))dn,d,

1?-1-5

+, O[G Qa%] dé,

* :=0[ G% Q( 9L, 26)]:+£d770 ,(10)

where L, is chosen as the modified heat

flux linear operator and has the form

a* _ 3* P
ans  0& 9,

L,= (1D

Also, the formal adjoint operator L. is given

as

a2 3%
ot o9&

L= +2 (12)

350

The solution to the periodic surface heat
flux problem 1s obtainable by replacing the
boundary and the initial conditions defined
by Egs. (9(a)-9(d)) and no heat source:

no==[_[@0. c0-3=(ne10. ¢)a,

(13)
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To determine an appropriate Green's
function, we take the finite Integral
transform pair through the aid of the

orthogonality relation:
Integral Transform

Clom €)= [, bu(0n. 2)G.& 1 7, E)dn, |

(14)
Inversion Formula
& m m s 0 —é m O
GOn &l mo €)= 2 Inle A?(;)(w &)
(15)
where Muw,,) Iis the normalization integral

given by __’%i Here, the eigenfunction is

given as

¢(w,, 7) = sinw,,7, (16)

where the eigenvalues w,, are defined as

wm= 25 m=1,23 (17)
7
Through the application of the above
integral transform pair, the Green's function
G(7&|7, &) satisfying Eq. (12) is
determined as
& Gl W D bW € "7

G r or o = .

(9, &1 1,, &) rgl oV ol — 1 Mw,) i
X(e\/wi—l(fa—:‘)i_ e'~m*l($‘.—5)i)'é_> £ (18)

Since the Green’s function i1s known, the

heat flux distributions X5 & can Dbe

obtained by substituting Eq. (18) into Eaq.
(13):

Q( 7, E) Green — Q steady +@Q transient » (19)

Q steady i ZmeIn Ll e ituQE' (20)

=1 (i — w,t+2w,0)

0 _ @, SIN @,y 7

transient — N
"=1 g oh—1
eﬂvwi-xs ez\/w,. 1

(21
1~i\/a)m—1+iwo @D

1+ o 1+iw,
By concentrating on the heat flux response in
time, we may express the heat flux wave
(20)

governed by Eq. in terms of its modal

representation:

(w6~ ¢)i

Q(’?vf) Green = ElSin wm?l AQ.Green | e . (22)

By substituting Eq. (22) into Eq. (20), we obtain

the heat flux amplitude and the phase,
respectively, as
2w,,
A g | = m[(wi,—w%>2+4wﬁ] . 2
= {
an’ [ P ] (24)

At a given value of w,,, therefore, the value of
the exciting frequency o, at which the heat

flux  amplitude | A 0 Green | possesses  a

maximum is determined by

d|Ag |
, Green —
da)o 0.

(25)
If only the positive frequency of w, for the

applied periodic surface heating is considered in
Eq. (25), the resonance frequency at which the
amplitude reaches a maximum is given as

w™ =\ wi—2, subject to w,>1.414. (26)

For a specified value of the modal frequency

w,,, by substituting Eq. (26) into Eq. (23), the
maximum heat flux amplitude |[A g greenl " under

the action of the external heating oscillating at

the resonance frequency w," " becomes,
max wm
| A g Green | = > for w,>1.414. (27)
MmN W, 1
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3.2 Finite Fourier transform

To investigate thermal wave characteristics as
a second case, the finite Fourier transform is
applied to the dimensionless thermal wave Eq.
(8). The finite Fourier sine transform” and the
inversion formula are defined as, respectively,

QU= wn) = [, @) sin(wp 1)y, 28)

Q(n)z% > Qwmsin(w, ). (29)
where the modal frequency is given as
wm=~”,71[’1, m=1,2,3... (30

By taking the finite Fourier sine transform,
the properties governed by the boundary and
initial conditions (9) are as follows,

@%%%ﬂ =@, e e ¥ _ 0%, Q.(m) , (31a)
9 2

2 aQS(;’) = (ng(@' (31b)

2 "%(5”) =2 ‘2%(5). (31c)

The heat flux thermal wave Eq. (8) having the
two boundary conditions becomes

szs dQs 2 _ £
e +2———d5 + 0@ = w, ¢, (32)
Q;=0, 0<n <7, (33a)
dQ
dE =0, 0<n<n,. (33b)

The solution of the transformed equation has the
following form:

Q.8 =Ae "+ Be™+ Qe (39)

where A; =—1+YV 1— &, Ay =—1—Y 1— &

Hence a general solution of the nonhomogeneous
equation 1s

Qs( E) FFT = QS(E)homogencous + Q_q(é)panicu]ar , (35)
Qs( E ) homogeneous
— O . et
= w120, 12/ 0h—1
1= E T+ 0e” ]
+[l—i(m— wo)e—iﬁﬁ"_if]} (36)
Qs(é) particular o e sz“E- (37)

7 7, -
W,— w,+ 1t 2w,

In order to study the resonance phenomenon

and the phase lag here, the homogeneous
solution, Eq. (36), will be neglected because it is
reduced exponentially in time. Accordingly, it
does not affect the frequency response of the

thermal waves as time goes by. The second

term, @Q,(&)panticuar, 1S sufficient to be considered
This
depends on both the modal frequency w,, and

as the resonance phenomenon. solution

the oscillatory frequency w, of the periodic pulse.

This also can be expressed as an amplitude and
a phase lag which are due to the heating

frequency and the heat flux wave in the system.

Qs( E)parlicular
3
(2 i (@, £ ¢ g Fouier)
2\/ (0h— 02+ (2w) ¢ T 58
-1 2w,
where ¢ gppr=tan (—5—7). (39)
w5, — wh

For the heat flux mode oscillating in the solid

with a specific modal frequency @, , the

thermal resonance 1s obviously proposed by the
following expression:

o,

(02— )+ 40*

iA Q. FI-‘TI = J (40)

When the value of w,, is given, the value of

the exciting frequency @, at which the

amplitude of the heat flux wave possesses a

maximum is determined by the following

- 20 -
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stationary condition:

d |A ¢ pr1l -0

dw, 41
which yields the following equation for w,’
w,= *V b —2. (42)

By taking the positive root for frequency in
(42),
amplitude of the heat flux wave amplifies and

the resonance frequency at which the

reaches a maximum becomes

max 2 2

W, =\ wh— subject to @, >V 2. (43)

X

The resonance frequency w,  is the externally

applied frequency which is rendering a
maximum temperature amplitude of |A g r¢7l. For

max

large values of w,, w, approaches the

The
maximum amplitude of the temperature wave,
denoted by |A grerl™, can be obtained by
substituting Eq. (43) into (40). The result is

modal frequency Wy - corresponding

Wm
2 y
2V wh—1

A Q,FFT|max - for Ct)m> \/—é (44)

Finally, when the particular solution (37) from
the finite Fourier sine transform is applied to
the inversion formula, Eq. (29), the resultant is
the same as that of Eq. (20). Consequently, the
heat flux characteristics such as the resonance
lag,
amplitude are completely equal between the two

amplitude, the phase and the maximum

mathematical methods.

4. RESULTS AND DISCUSSIONS

4.1 RESONANCE

The thermal
combining the modified heat flux law with the

wave equations derived from

energy conservation law are analyzed by the
finite Founier sine transform and the Green's

technique, respectively. For the
resonance to occur, one boundary condition at

function

x=0 is periodically heated and the other surface
at x=/ 1s insulated.

The thermal resonance of heat flux wave
propagating in solids with a finite speed of heat
propagation is studied. The emphasis is placed
on the externally applied exciting frequency at
which the amplitude of the thermal waves
reaches a maximum. The amplitude of thermal
related to the
as the modal frequencies

waves excited is exciting
frequencies as well
relating to the wave modes. Since the resonance
1s a special behavior in time, a
the
illustration purpose. The emphasis will be on

studying a comparative analysis

phenomenon

one-dimensional slab is considered for
among the

finite Fourier sine transform method and the

Green's function method under the same
boundary  conditions. The use of the
g-representation is  concerned with the

investigation of heat flux resonance due to the

problems involving flux-specified boundary
conditions.

Figs. 2 and 3 show the amplitude of the heat
flux wave derived from the Green's function
method, while Figs. 4 and 5 show from the
finite Fourier sine transform under the same
the heat flux

amplitude obtained from the Green’s function

boundary conditions. However,

method is 2/7; times larger than that of the

finite Fourler sine transform, as shown in Figs.
2 to 5. It is the reason that the amplitude from
the finite Fourier transform 1s regarded as the
only V{m) of the inversion formula, Eq. (30).
the results from the two different
have the

Therefore,
methods same magnitude of the
amplitude and the same physical characteristics,
although the

Green’s function method is twice as large as

the heat flux amplitude from

those by the finite Fourier sine transform in
those figures. When the modal frequency o,,

increases from 14142 to 4, the amplitude of
|A g perl ™ decreases. Figs. 3 and 5 show the

heat flux amplitude varying with the frequency
ratio, which 1s the ratio of the heating

- 21 -
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Fig. 2 Amplitudes of heat flux waves derived
the method
varying with the heating frequency

from Green’s function

e, =1.4142

ey ® 2

My ® 3

0w, =4

Heat flux ampittude, [A_ |
i
>

02

Fig. 3 Amplitude of heat flux waves derived
the method
varying with the frequency ratio.

from Green’s function

0.9

wm=1.4142

Heat flux amplitude, | Aq er |

Fig. 4 Amplitudes of heat flux waves derived

from the finite Fourler sine transform

varying with the heating frequency

0.9+
@,=1.4142

0u= 2

Heat fiux amplitude, |A___ |

6 8 10

40)0 o,
Fig. 5 Amplitude of heat flux waves derived

from the finite Fourier sine transform

varying with the frequency ratio

ax
s |

| AQ,FFV

'
N

Maximum heat flux amplitude: | A, g, | ™ | Ag cer | ™

Fig. 6 Comparison of the maximum heat flux
amplitude between the Green’s function
methods and the finite Fourier transform

frequency to the modal frequency. The

maximum amplitude occurs in the neighborhood

of the frequency ratio w,/w,=1. In other

words, the resonance frequency at which the
amplitude  possesses a maximum value
approaches the modal frequencies w,, of the

corresponding modes. In the case that the modal
frequency is close to the exciting frequency, the
flux resonance occurs actively.

In Figure 6, it is shown that the maximum
heat flux amplitude obtained from the two

different methods are agreed well. The peak

- 22 -
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values in each curve in Figs. 2 and 4 are shown
(27) and
frequencies

and analytically presented from Egs.
(44),

increase,

respectively. As the modal

the maximum heat flux amplitude

decreases.

42 PHASE LAG

The physical concept of time-lag between the
heat flux vector and the temperature gradient is
used to describe the relaxation behavior in
thermal Equation,
g7 t+ ) =—kv (7,0, that the
temperature gradient established at time ¢ results

wave propagation.

depicts

in a delayed heat flux occurring at a later time
t+ ¢ In addition the delayed
response explicitly, Eq. (1) also has an important

to revealing

characteristic, namely the path-dependency, in
the thermal loading history. From this physical
points of view, the phase lag in the thermal
wave theory has been examined. The particular

solutions of the governing thermal wave
equations are expected to be a time-lag
phenomenon.

140

Phase angle: ¢wn , 0 2.aresn
(=]
o

0 | i L 1 L I L 13 !
1 2 3 4 5 6 7 8 9 10

Frequency ratio,o /o,

Fig. 7 Comparisons of the phase angles in the
heat flux model calculated by the finite
and the Green's

Fourier transform

function method.

The the heat
systems calculated by the finite Fourier sine
the
concerning the phase angle is shown in Figure
7. The

comparison of flux wave

transform and Green's function method

variation of phase angle here is

completely the same. The phase angle depends

on the heating frequency w,, regardless of the

amplitude. The phase angle also is very small
for small values of the frequency ratio. For very
large values of the frequency ratio, the phase
angle approaches 180° asymptotically. Thus the
amplitude is in phase for o,/ ®,<1 and out of
phase for w,/ w,,>1. In the vicinity of w,/ w,=1
with the thermal resonance occurring actively,

the phase angle of thermal waves will be 90
degree.

5. CONCLUSION

The phase lag and resonance characteristics of
the heat flux wave under the same excitation
two different
methods: the Green’'s function method and the

are analyzed by mathematical
finite Fourier sine transform. The thermal wave
equation derived from the modified heat flux law
and the energy conservation law was used and
yielded the heat flux wave distributions.

For the resonance to occur, the side of the
left boundary surface was periodically heated
and the right side was insulated. It has shown
that the modal frequency of the thermal wave
than a minimum value of

must be larger

w,, =1.4142. The desired frequencies to excite
the the
phenomenon have been related to the modal
The
modal frequency in the vicinity of the heating

thermal waves for resonance

frequencies. resonance occurred at the
frequency and the amplitude of heat flux wave
was markedly reduced in the domain of other
The
excited and resonated only when the modal

modal frequencies. wave modes were

frequency exceeded 1.4142. The results presented
in this paper agreed well with those

58D and Juhng et al o

above
in the
The

phase differed by 90 degree in the vicinity of

given by Tzou
cases of the same boundary conditions.

in which the thermal
These
applied to

the frequency domain
activated. resonance
the

measurement of the properties such as thermal

resonance was

characteristics may  be

wave speed and thermal diffusivity.
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As a result of the comparison of the Green’'s
function method and the finite Fourier transform,
they agree well with the above viewpoint. Thus,
in order to find out the tendency of thermal
characteristics the finite Fourier transform
technique 1is mathematically easier than the
Green’s function method.
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