Journal of the Korean Institute of Intelligent Systems
/
v.17
no.4
/
pp.488-493
/
2007
In general, recommendation systems quantify real-time context information obtained in the stage of collaborative filtering and use quantified context information in order to recommend services. But the recommendation systems can have problems of recommending inaccurate information because of lack of context information or classifying users into inaccurate groups because of simple classification works in the stage of quantification. In this paper, we solved the problems of lack of context information obtained in real-time by combining users' profile information used in the contents-based filtering and context information obtained in real-time. In addition, we tried collaborative filtering at the quantification stage by improving absolute classification methods to relative ones. As the result of experiments, this method improved prediction preference by 5.8% than real-time recommendation systems using context information in pure P2P environment.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.281-283
/
2021
The representative companies mentioned in the recommendation service in the domestic OTT(Over-the-top media service) market are YouTube and Netflix. YouTube, through various methods, started personalized recommendations in earnest by introducing an algorithm to machine learning that records and uses users' viewing time from 2016. Netflix categorizes users by collecting information such as the user's selected video, viewing time zone, and video viewing device, and groups people with similar viewing patterns into the same group. It records and uses the information collected from the user and the tag information attached to the video. In this paper, we propose a method to improve video media recommendation by automatically generating metadata of video media that was written by hand.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.10
no.3
/
pp.51-59
/
2010
There have been proposed several movie recommendation algorithms based on Collaborative Filtering(CF). CF decides neighbors whose ratings are the most similar to each other and it predicts how well users will like new movies, based on ratings from neighbors. This paper proposes a new method to improve the result predicted by CF based on genres of the movies seen by users. The proposed method can be combined to the most of all existing CF algorithms. In this paper, a performance evaluation has been conducted between an existing simple CF algorithm and CF-Genre that is the proposed genre-based method added to the CF algorithm. The result shows that CF-Genre improves 3.3% in prediction performance over existing CF algorithms.
Journal of the Korea Society of Computer and Information
/
v.26
no.10
/
pp.185-198
/
2021
With the development of Internet technology, because traditional recommendation algorithms cannot learn the in-depth characteristics of users or items, this paper proposed a recommendation algorithm based on the AMITI(attention mechanism and improved TF-IDF) to solve this problem. By introducing the two-layer attention mechanism into the CNN, the feature extraction ability of the CNN is improved, and different preference weights are assigned to item features, recommendations that are more in line with user preferences are achieved. When recommending items to target users, the scoring data and item type data are combined with TF-IDF to complete the grouping of the recommendation results. In this paper, the experimental results on the MovieLens-1M data set show that the AMITI algorithm improves the accuracy of recommendation to a certain extent and enhances the orderliness and selectivity of presentation methods.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.263-266
/
2005
현재 유비쿼터스 환경에서 대부분의 시스템이 개인화된 추천 서비스를 위한 컨텍스트 인식 과정에서 사용자의 직접 피드백을 받는 경우가 많다. 다양한 서비스가 사용자 주변에 존재한다고 하더라도 사용자가 서비스를 받기 위해 직접 피드백을 하는 경우가 많아지면 invisible service를 받을 수 없게 된다. 본 논문에서는 마이닝 기법을 기반으로 사용자의 프로파일 생성과 갱신, 선호도를 예측하여 효율적인 서비스를 제공하는 컨텍스트 마이닝 시스템을 제안한다. 본 시스템에서는 초기프로파일을 생성할 때만 사용자의 직접 피드백을 이용하고, 사용자 프로파일의 갱신과 선호도 예측, 추천 둥 컨텍스트 마이닝 과정에서는 사용자의 행동과 사용자와 유사한 그룹의 선호도, 그리고 사용자의 주변 환경과 같은 컨텍스트 정보를 이용하여 직접 피드백을 최소화한다.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.475-477
/
2001
본 논문은 사용자의 구매 패턴을 찾아서 사용자가 원하는 상품을 추천하는 알고리즘을 제안하고자 한다. 제안하고 있는 item dependency map은 구매된 상품간의 관계를 수식화 하여 행렬의 형태로 표현한 것이다. Item dependency map의 값은 사용자가 A라는 상품을 구매한 후 B 상품을 살 확률이다. 이런 정보를 가지고 있는 item dependency map은 홉필드 네트웍(Hopfield network)에서 연상을 위한 패턴 값으로 적용된다. 홉필드 네트웍은 각 노드사이의 연결가중치에 기억하고자 하는 것들을 연상시킨 뒤 어떤 입력을 통해서 전체 네트워크가 어떤 평형상태에 도달하는 방식으로 작동되는 신경망 중의 하나이다. 홉필드 네트웍의 특징 중의 하나는 부분 정보로부터 전체 정보를 추출할 수 있는 것이다. 이러한 특징을 가지고 사용자들의 일반적인 구매패턴을 일부 정보만 가지고 예측할 수 있다. Item dependency map은 홉필드 네트웍에서 사용자들의 그룹별 패턴을 학습하는데 사용된다. 따라서 item dependency map이 얼마나 사용자 구매패턴에 대한 정보를 가지고 있는지에 따라 그 결과가 결정되는 것이다. 본 논문은 정확한 item dependency map을 계산해 내는 알고리즘을 주로 논의하겠다.
With the advent of multi-channel TV, IPTV and smart TV services, excessive amounts of TV program contents become available at users' sides, which makes it very difficult for TV viewers to easily find and consume their preferred TV programs. Therefore, the service of automatic TV recommendation is an important issue for TV users for future intelligent TV services, which allows to improve access to their preferred TV contents. In this paper, we present a recommendation model based on statistical machine learning using a collaborative filtering concept by taking in account both public and personal preferences on TV program contents. For this, users' preference on TV programs is modeled as a latent topic variable using LDA (Latent Dirichlet Allocation) which is recently applied in various application domains. To apply LDA for TV recommendation appropriately, TV viewers's interested topics is regarded as latent topics in LDA, and asymmetric Dirichlet distribution is applied on the LDA which can reveal the diversity of the TV viewers' interests on topics based on the analysis of the real TV usage history data. The experimental results show that the proposed LDA based TV recommendation method yields average 66.5% with top 5 ranked TV programs in weekly recommendation, average 77.9% precision in bimonthly recommendation with top 5 ranked TV programs for the TV usage history data of similar taste user groups.
Due to the rapid increase of available contents via the convergence of broadcasting and internet, the efficient access to personally preferred contents has become an important issue. In this paper, for recommendation scheme for TV programs using a collaborative filtering technique is studied. For recommendation of user preferred TV programs, our proposed recommendation scheme consists of offline and online computation. About offline computation, we propose reasoning implicitly each user's preference in TV programs in terms of program contents, genres and channels, and propose clustering users based on each user's preferences in terms of genres and channels by dynamic fuzzy clustering method. After an active user logs in, to recommend TV programs to the user with high accuracy, the online computation includes pulling similar users to an active user by similarity measure based on the standard preference list of active user and filtering-out of the watched TV programs of the similar users, which do not exist in EPG and ranking of the remaining TV programs by proposed rank model. Especially, in this paper, the BM (Best Match) algorithm is extended to make the recommended TV programs be ranked by taking into account user's preferences. The experimental results show that the proposed scheme with the extended BM model yields 62.1% of prediction accuracy in top five recommendations for the TV watching history of 2,441 people.
The massive card transaction data generated in the tourism industry has become an important resource that implies tourist consumption behaviors and patterns. Based on the transaction data, developing a smart service system becomes one of major goals in both tourism businesses and knowledge management system developer communities. However, the lack of rating scores, which is the basis of traditional recommendation techniques, makes it hard for system designers to evaluate a learning process. In addition, other auxiliary factors such as temporal, spatial, and demographic information are needed to increase the performance of a recommendation system; but, gathering those are not easy in the card transaction context. In this paper, we introduce CTDDTR, a novel approach using card transaction data to recommend tourism services. It consists of two main components: i) Temporal preference Embedding (TE) represents tourist groups and services into vectors through Doc2Vec. And ii) Deep tourism Recommendation (DR) integrates the vectors and the auxiliary factors from a tourism RDF (resource description framework) through MLP (multi-layer perceptron) to provide services to tourist groups. In addition, we adopt RFM analysis from the field of knowledge management to generate explicit feedback (i.e., rating scores) used in the DR part. To evaluate CTDDTR, the card transactions data that happened over eight years on Jeju island is used. Experimental results demonstrate that the proposed method is more positive in effectiveness and efficacies.
This paper proposes a hybrid tour path planning system for multiple visitors in a museum. The proposed path planning system merges individual user profiles into a group profile by exploiting the multiplicative utilization algorithm. It then generates a tour path for the users based on mixed initiative decision of the system and the involved visitors. It automatically selects visiting sites when group users have highly similar preferences while it asks users to select their appropriate visiting sites among available sites when their preferences are different. We developed the hybrid path planning system based on a tabletop display and evaluated it with four different exhibition settings and 11 participants. We found that the mixed decision of the system and users was useful in building a tour path for a group of visitors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.