• Title/Summary/Keyword: 그래프-LSTM

Search Result 11, Processing Time 0.025 seconds

Risk Detection through Firearm Recognition Using Deep Learning-Based Object-Human Heterogeneous Graph Extraction (딥러닝 모델 기반 사물-인체 이종 그래프 추출을 활용한 총기 인식 및 위협 감지 기법)

  • Jeongeun Yang;Jongeun Baek;Shakila Shojaei;Hyojin Bae;Juhong Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.684-692
    • /
    • 2024
  • Effective border security is crucial in managing and mitigating firearm-related threats. While prior research has focused on firearm detection, it lacks contextual analysis. This paper advances firearm-related incident assessment by integrating pose estimation to improve gun violence detection. Our novel approach extracts body and firearm pose graphs and employs Graph Attention Networks(GAT) for graph analysis to accurately identify gun violence incidents. By recognizing associated actions, our system provides greater situational awareness beyond mere firearm detection. Utilizing Graph-LSTM, we capture spatial and temporal information. As a result, our proposed algorithm is lighter and more accurate than the CNN-LSTM model used as a baseline, achieving test F1-scores of 82.04 % on our collected data.

Automatic Tag Classification from Sound Data for Graph-Based Music Recommendation (그래프 기반 음악 추천을 위한 소리 데이터를 통한 태그 자동 분류)

  • Kim, Taejin;Kim, Heechan;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.10
    • /
    • pp.399-406
    • /
    • 2021
  • With the steady growth of the content industry, the need for research that automatically recommending content suitable for individual tastes is increasing. In order to improve the accuracy of automatic content recommendation, it is needed to fuse existing recommendation techniques using users' preference history for contents along with recommendation techniques using content metadata or features extracted from the content itself. In this work, we propose a new graph-based music recommendation method which learns an LSTM-based classification model to automatically extract appropriate tagging words from sound data and apply the extracted tagging words together with the users' preferred music lists and music metadata to graph-based music recommendation. Experimental results show that the proposed method outperforms existing recommendation methods in terms of the recommendation accuracy.

Analysis of Accuracy and Loss Performance According to Hyperparameter in RNN Model (RNN모델에서 하이퍼파라미터 변화에 따른 정확도와 손실 성능 분석)

  • Kim, Joon-Yong;Park, Koo-Rack
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.31-38
    • /
    • 2021
  • In this paper, in order to obtain the optimization of the RNN model used for sentiment analysis, the correlation of each model was studied by observing the trend of loss and accuracy according to hyperparameter tuning. As a research method, after configuring the hidden layer with LSTM and the embedding layer that are most optimized to process sequential data, the loss and accuracy of each model were measured by tuning the unit, batch-size, and embedding size of the LSTM. As a result of the measurement, the loss was 41.9% and the accuracy was 11.4%, and the trend of the optimization model showed a consistently stable graph, confirming that the tuning of the hyperparameter had a profound effect on the model. In addition, it was confirmed that the decision of the embedding size among the three hyperparameters had the greatest influence on the model. In the future, this research will be continued, and research on an algorithm that allows the model to directly find the optimal hyperparameter will continue.

Data Cleansing Algorithm for reducing Outlier (데이터 오·결측 저감 정제 알고리즘)

  • Lee, Jongwon;Kim, Hosung;Hwang, Chulhyun;Kang, Inshik;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.342-344
    • /
    • 2018
  • This paper shows the possibility to substitute statistical methods such as mean imputation, correlation coefficient analysis, graph correlation analysis for the proposed algorithm, and replace statistician for processing various abnormal data measured in the water treatment process with it. In addition, this study aims to model a data-filtering system based on a recent fractile pattern and a deep learning-based LSTM algorithm in order to improve the reliability and validation of the algorithm, using the open-sourced libraries such as KERAS, THEANO, TENSORFLOW, etc.

  • PDF

Performance Comparison of Machine Learning in the Prediction for Amount of Power Market (전력 거래량 예측에서의 머신 러닝 성능 비교)

  • Choi, Jeong-Gon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.943-950
    • /
    • 2019
  • Machine learning can greatly improve the efficiency of work by replacing people. In particular, the importance of machine learning is increasing according to the requests of fourth industrial revolution. This paper predicts monthly power transactions using MLP, RNN, LSTM, and ANFIS of neural network algorithms. Also, this paper used monthly electricity transactions for mount and money, final energy consumption, and diesel fuel prices for vehicle provided by the National Statistical Office, from 2001 to 2017. This paper learns each algorithm, and then shows predicted result by using time series. Moreover, this paper proposed most excellent algorithm among them by using RMSE.

Korean Dependency Parsing using Second-Order TreeCRF (Second-Order TreeCRF를 이용한 한국어 의존 파싱)

  • Min, Jinwoo;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.108-111
    • /
    • 2020
  • 한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔으며 현재 가장 높은 성능을 보이고 있는 그래프 기반 파서인 Biaffine 어텐션 모델은 입력 시퀀스를 다층의 LSTM을 통해 인코딩 한 후 각각 별도의 MLP를 적용하여 의존소와 지배소에 대한 표상을 얻고 이를 Biaffine 어텐션을 통해 모든 의존소에 대한 지배소의 점수를 얻는 모델이다. 위의 Biaffine 어텐션 모델은 별도의 High-Order 정보를 활용하지 않는 first-order 파싱 모델이며 학습과정에서 어떠한 트리 관련 손실을 얻지 않는다. 본 연구에서는 같은 부모를 공유하는 형제 노드에 대한 점수를 모델링하고 정답 트리에 대한 조건부 확률을 모델링 하는 Second-Order TreeCRF 모델을 한국어 의존 파싱에 적용하여 실험 결과를 보인다.

  • PDF

Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy (에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측)

  • Jung, Ho Cheul;Sun, Young Ghyu;Lee, Donggu;Kim, Soo Hyun;Hwang, Yu Min;Sim, Issac;Oh, Sang Keun;Song, Seung-Ho;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.134-142
    • /
    • 2019
  • As the development of internet of energy (IoE) technologies and spread of various electronic devices have diversified patterns of energy consumption, the reliability of demand prediction has decreased, causing problems in optimization of power generation and stabilization of power supply. In this study, we propose a deep learning method, 1-Dimention-Convolution and Bidirectional Long Short-Term Memory (1D-ConvBLSTM), that combines a convolution neural network (CNN) and a Bidirectional Long Short-Term Memory(BLSTM) for highly reliable demand forecasting by effectively extracting the energy consumption pattern. In experimental results, the demand is predicted with the proposed deep learning method for various number of learning iterations and feature maps, and it is verified that the test data is predicted with a small number of iterations.

Named Entity Linking Based on Deep Learning Model (딥러닝 모형 기반 한국어 개체명 연결)

  • Sohn, Dae-Neung;Lee, Dongju;Lee, Yong-Hun;Chung, Youjin;Kang, Inho
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.90-95
    • /
    • 2016
  • 개체명 연결이란 문장 내 어떤 단어를 특정 사물이나 사람, 장소, 개념 등으로 연결하는 작업이다. 과거에는 주로 연결 대상 단어 주변 문맥에서 자질 공학을 거쳐 입력을 만들고, 이를 이용해 SVM이나 Logistic Regression 혹은 유사도 계산, 그래프 기반 방법론 등으로 지도/비지도 학습하여 문제를 풀어왔다. 보통 개체명 연결 문제의 출력 부류(class)가 사물이나 사람 수만큼이나 매우 커서, 자질 희소성 문제를 겪을 수 있다. 본 논문에서는 이 문제에 구조적으로 더 적합하며 모형화 능력이 더 뛰어나다 여겨지는 딥러닝 기법을 적용하고자 한다. 다양한 딥러닝 모형을 이용한 실험 결과 LSTM과 Attention기법을 같이 사용했을 때 가장 좋은 품질을 보였다.

  • PDF

Named Entity Linking Based on Deep Learning Model (딥러닝 모형 기반 한국어 개체명 연결)

  • Sohn, Dae-Neung;Lee, Dongju;Lee, Yong-Hun;Chung, Youjin;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.90-95
    • /
    • 2016
  • 개체명 연결이란 문장 내 어떤 단어를 특정 사물이나 사람, 장소, 개념 등으로 연결하는 작업이다. 과거에는 주로 연결 대상 단어 주변 문맥에서 자질 공학을 거쳐 입력을 만들고, 이를 이용해 SVM이나 Logistic Regression 혹은 유사도 계산, 그래프 기반 방법론 등으로 지도/비지도 학습하여 문제를 풀어왔다. 보통 개체명 연결 문제의 출력 부류(class)가 사물이나 사람 수만큼이나 매우 커서, 자질 희소성 문제를 겪을 수 있다. 본 논문에서는 이 문제에 구조적으로 더 적합하며 모형화 능력이 더 뛰어나다 여겨지는 딥러닝 기법을 적용하고자 한다. 다양한 딥러닝 모형을 이용한 실험 결과 LSTM과 Attention기법을 같이 사용했을 때 가장 좋은 품질을 보였다.

  • PDF

An RNN-based Fault Detection Scheme for Digital Sensor (RNN 기반 디지털 센서의 Rising time과 Falling time 고장 검출 기법)

  • Lee, Gyu-Hyung;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • As the fourth industrial revolution is emerging, many companies are increasingly interested in smart factories and the importance of sensors is being emphasized. In the case that sensors for collecting sensing data fail, the plant could not be optimized and further it could not be operated properly, which may incur a financial loss. For this purpose, it is necessary to diagnose the status of sensors to prevent sensor' fault. In the paper, we propose a scheme to diagnose digital-sensor' fault by analyzing the rising time and falling time of digital sensors through the LSTM(Long Short Term Memory) of Deep Learning RNN algorithm. Experimental results of the proposed scheme are compared with those of rule-based fault diagnosis algorithm in terms of AUC(Area Under the Curve) of accuracy and ROC(Receiver Operating Characteristic) curve. Experimental results show that the proposed system has better and more stable performance than the rule-based fault diagnosis algorithm.