Acknowledgement
이 논문은 2024년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원(No. RS-2023-00228996, 우주상황인식을 위한 실-가상 연동형 국방 메타버스 기반 기술 개발) 및 2024년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. RS-2024-00419657, 우주 현지 자원을 활용한 건축 기술)을 받아 수행된 연구임.
References
- Kim, J., and Choi, S., "Performance Improvement of a Deep Learning-based Object Recognition using Imitated Red-green Color Blindness of Camouflaged Soldier Images," J. KIMS Technol., Vol. 23, No. 2, pp. 139-146, 2020.
- Lee, H., and Park, J., "A Study on Maritime Object Image Classification Using a Pruning-Based Lightweight Deep-Learning Model," J. KIMS Technol., Vol. 27, No. 3, pp. 346-354, 2024.
- Kim, M., and Lee, S., "Experimental Research on the Optimal Surveillance Equipment Allocation Using Geo-spatial Information," J. KIMS Technol., Vol. 9, No. 1, pp. 72-79, 2006.
- Gelana, F., and Yadav, A., "Firearm Detection from Surveillance Cameras Using Image Processing and Machine Learning Techniques," Smart Innovations in Communication and Computational Sciences: Proceedings of ICSICCS-2018, Springer Singapore, pp. 203-215, 2019.
- de Azevedo Kanehisa, R. F., and de Almeida Neto, A., "Firearm Detection using Convolutional Neural Networks," ICAART (2), pp. 45-52, 2019.
- Si, C., Chen, W., Wang, W., Wang, L., and Tan, T., "An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 1227-1236, 2019.
- Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., and Shen, L., "Co-Occurrence Feature Learning for Skeleton Based Action Recognition Using Regularized Deep LSTM Networks," Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3697-3703, 2016.
- Zhang, H., Zhu, X., Yao, T., Li, Y., and Mei, T., "Graph Convolutional LSTM Model for Skeleton-Based Action Recognition," Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), pp. 645-650, 2019.
- Jocher, G., et al., "YOLOv8: Open Source Pose Model," Available at: https://github.com/ultralytics/yolov8, 2023.
- Velickovic, P., et al., "Graph Attention Networks," arXiv preprint arXiv:1710.10903, 2017.
- Salazar-Gonzalez, A., et al., "Simulation of Attacks Dataset," Journal of XYZ Research, Vol. 12, No. 4, pp. 123-134, 2020.
- Brooks, M., "COCO Annotator," Available at: https://github.com/jsbroks/coco-annotator, 2019.
- Paszke, A., et al., "Pytorch: An Imperative Style, High-Performance Deep Learning Library," Advances in Neural Information Processing Systems, Vol. 32, pp. 8024-8035, 2019.
- Wang, M., et al., "Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks," arXiv preprint arXiv:1909.01315, 2019.
- Donahue, J., Hendricks, L. A., Venugopalan, S., Guadarrama, S., Saenko, K., Rohrbach, M., and Darrell, T., "Long-term Recurrent Convolutional Networks for Visual Recognition and Description," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 2625-2634, 2015.