• 제목/요약/키워드: 그래프 행렬화

검색결과 23건 처리시간 0.017초

최대 동일 길이를 갖는 여원 HGCA구성 (Construction of Complemented Hybrid Group Cellular Automata with Maximum Equal Lengths)

  • 조성진;최언숙;황윤희;김진경;표용수;김한두
    • 한국정보통신학회논문지
    • /
    • 제10권9호
    • /
    • pp.1565-1572
    • /
    • 2006
  • 최근 무선 통신의 출현과 PDA, 스마트 카드와 같은 휴대용 장치의 발전으로 인해, 이에 대한 보안과 개인 정보보호에 대한 필요성이 대두되면서 암호학의 적용에 관심이 높아지고 있다. CA는 암 복호화를 공유할 수 있는 하드웨어 구현이 용이하다. 본 논문에서는 전이규칙 60, 102 또는 204를 갖는 선형 하이브리드 셀룰라 오토마타가 그룹 셀룰라 오토마타가 되는 조건을 제안하고 이 셀룰라 오토마타로부터 유도된 여원 하이브리드 그룹 CA의 상태전이 그래프에서 모든 사이클의 주기가 동일하고 가능한 최대 길이를 갖는 CA가 되기 위한 여 원벡터의 조건을 제시한다. 또한 여원 하이브리드 그룹 셀룰라 오토마타의 사이클들 간의 관계를 분석한다. 이는 Mukhopadhyay의 결과의 일반화이다.

딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발 (Development of deep learning structure for complex microbial incubator applying deep learning prediction result information)

  • 김홍직;이원복;이승호
    • 전기전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.116-121
    • /
    • 2023
  • 본 논문에서는 딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조를 개발한다. 제안하는 복합 미생물 배양기는 수집한 복합 미생물 데이터에 대해 복합 미생물 데이터 전처리, 복합 미생물 데이터 구조 변환, 딥러닝 네트워크 설계, 설계한 딥러닝 네트워크 학습, 시제품에 적용되는 GUI 개발 등으로 구성된다. 복합 미생물 데이터 전처리에서는 미생물 배양에 필요한 당밀, 영양제, 식물엑기스, 소금 등의 양에 대해 원-핫 인코딩을 실시하며, 배양된 결과로 측정된 pH 농도와 미생물의 셀 수에 대해 최대-최소 정규화 방법을 사용하여 데이터를 전처리한다. 복합 미생물 데이터 구조 변환에서는 전처리된 데이터를 물 온도와 미생물의 셀 수를 연결하여 그래프 구조로 변환 후, 인접 행렬과 속성 정보로 나타내어 딥러닝 네트워크의 입력 데이터로 사용한다. 딥러닝 네트워크 설계에서는 그래프 구조에 특화된 그래프 합성곱 네트워크를 설계하여 복합 미생물 데이터를 학습시킨다. 설계한 딥러닝 네트워크는 Cosine 손실함수를 사용하여 학습 시에 발생하는 오차를 최소화하는 방향으로 학습을 진행한다. 시제품에 적용되는 GUI 개발은 사용자가 선택하는 물 온도에 따라 목표하는 pH 농도(3.8 이하) 복합 미생물의 셀 수(108 이상)를 배양시키기 적합한 순으로 나타낸다. 제안된 미생물 배양기의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과는, pH 농도의 경우 평균 3.7로, 복합 미생물의 셀 수는 1.7 × 108으로 측정되었다. 따라서, 본 논문에서 제안한 딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조의 효용성이 입증되었다.

멀티모달 방법론과 텍스트 마이닝 기반의 뉴스 비디오 마이닝 (A News Video Mining based on Multi-modal Approach and Text Mining)

  • 이한성;임영희;유재학;오승근;박대희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제37권3호
    • /
    • pp.127-136
    • /
    • 2010
  • 정보 통신기술이 발전함에 따라 멀티미디어 데이터를 포함하는 디지털 기록물의 양은 기하급수적으로 증가하고 있다. 특히 뉴스 비디오는 시대상을 반영하는 풍부한 정보를 내포하고 있으므로, 이를 효과적으로 관리하고 분석하기 위한 뉴스 비디오 데이터베이스 및 뉴스 비디오 마이닝은 광범위하게 연구되어왔다. 그러나 현재까지의 뉴스 비디오 관련 연구들은 뉴스 기사에 대한 브라우징, 검색, 요약에 치중되어 있으며, 뉴스 비디오에 내재되어 있는 풍부한 잠재적 지식을 탐사하는 고수준의 의미 분석 단계에는 이르지 못하고 있다. 본 논문에서는 뉴스 비디오 클립과 스크립트를 동시에 이용하는, 멀티모달 방법론과 텍스트 마이닝 기반의 뉴스 비디오 마이닝 시스템을 제안한다. 제안된 시스템은 텍스트 마이닝의 군집분석을 통해 뉴스 기사들을 자동 분류하고, 분류 결과에 대해 기간별 군집 추이그래프, 군집성장도 분석 및 네트워크 분석을 수행함으로써, 뉴스 비디오의 기사별 주제와 관련한 다각적 분석을 수행한다. 제안된 시스템의 타당성 검증을 위하여 "2007년 제2차 남북 정상회담" 관련 뉴스 비디오를 대상으로 뉴스 비디오 분석을 수행하였다.