• 제목/요약/키워드: 그래프 패턴

검색결과 195건 처리시간 0.035초

이동데이터 시간분석을 통한 이동양태 파악 (Investigating Cyclic Pattern of Mobility through Analysis of Geopositioning Data)

  • 홍수찬;송하윤
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.723-726
    • /
    • 2019
  • 사람은 한 장소를 방문할 때 순환 패턴이 있으며, 이 패턴에 여러 싸이클의 경향이 있다. 요즘은 스마트폰 및 기타 휴대용 장치로 개인 이동성 데이터를 수집하는 것이 가능하다. 이러한 장치는 다양한 위치 데이터를 수집하고 여러가지 방법으로 분석할 수 있게 해준다. 위치 수집기를 기반으로 지구 위치 데이터에서 추출된 사람의 이동성 모델을 수립하고, 위치 클러스터를 방문자의 순환 패턴을 조사할 수 있다. 수년 동안 수집된 개인의 이동성 모델을 토대로 클러스터 재방문 시간을 계산 후 분석하여 그래프로 시각화하였다. 시간 순서의 위치 클러스터와 방문 클러스터에 대한 위치 데이터는 1 분 단위로 측정된다. 전체 데이터 방문 횟수는 15 분마다 정규화하고, 자원 봉사자의 다양한 지리적 위치 데이터 셋에 대해 방문의 순환 패턴은 자기 상관, 자기 공분산 및 재방문 시간으로 살펴볼 수 있다.

딥러닝 기반의 프린지 패턴 생성 네트워크 학습에 대한 최적화 (Training Optimization for Fringe Pattern Generation Network Based on Deep Learning)

  • 박선종;김우석;서영호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.858-859
    • /
    • 2022
  • 본 논문에서는 프린지 패턴을 생성하는 딥러닝 기반의 WGAN-GP 네트워크의 최적화 방법을 제안한다. 기존의 복소 프린지 패턴 생성을 위한 GAN 모델은 생성의 정확도뿐만 아니라 학습의 안정성이 다소 부족하였다. 이에 따라 WGAN-GP 등의 업그레이드 된 방법을 사용하였지만, 네트워크 구조 및 파라미터에 따른 최적화가 필요하다. 보다 정확도 높은 정확도를 가진 프린지 패턴 생성을 위해 learning rate decay 사용하여 학습된 결과를 epoch 별 그래프로 최적화 전의 결과와 비교하고, 홀로그램과 복원 결과에 대한 PSNR 을 비교한다.

  • PDF

굴곡 기반 형태 그래프를 이용한 모양 검색 (Shape Retrieval using Curvature-based Morphological Graphs)

  • 방난효;엄기현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권5호
    • /
    • pp.498-508
    • /
    • 2005
  • 모양 데이타는 이미지가 나타내는 의미를 가장 잘 반영하는 데이타로서 이미지 검색에 중요한 정보로 사용된다 특히 구조적으로 표현된 모양 특징은 모양이 갖는 기초적 특성과 그들간의 관계 정보를 잘 나타내므로 폭넓게 연구되고 있다. 그러나 대개의 구조적 모양 특징들은 그래프나 트리와 같은 구조로 표현되므로 모양 데이타 검색에서 효율적인 검색 시간을 보장할 수 없는 문제를 지니고 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 모양의 윤곽선 정보를 기반으로한 굴곡 기반 형태 그래프를 생성하고 이를 일반화한 구조로부터 모양을 클러스터링할 수 있는 키를 설계한다. 제안한 굴곡 기반 형태 그래프는 모양이 가지고 있는 윤곽선 특성과 영역의 형태적 특성을 모두 가지고 있다. 모양 검색은 단계적으로 이루어진다. 클러스터링을 통해 검색 공간을 축소하고 외부 굴곡 특징을 이용한 굴곡의 패턴 매칭을 통해 종합적인 유사도가 결정된다. 다양한 실험을 통해 굴곡 기반 형태 그래프와 클러스터링을 통해 검색 공간과 비용이 줄어드는 것을 보여준다.

행렬기반의 정합 알고리듬에 의한 음악 기호의 인식 (A Matrix-Based Graph Matching Algorithm with Application to a Musical Symbol Recognition)

  • 허경용;장경식;장문익;김재희
    • 한국정보처리학회논문지
    • /
    • 제5권8호
    • /
    • pp.2061-2074
    • /
    • 1998
  • 패턴 인식의 분야에서 그래프는 복잡한 대상체의 표현 및 인식의 도구로서 많이 사용되지만, 그래프간의 유사성 비교에는 많은 시간이 소요될 뿐아니라 실제 입력되는 영상은 왜곡으로 인해 저장되어 있는 이상적인 영상과 동일함을 기대할 수 없으므로 유사한 정도를 판별하는 기준이 마련되어야만 한다. 이 논문에서는 행렬을 그래프의 표현 수단으로 사용하였다. 행렬은 표현이 간단하며, 정의되어 있는 연산을 통해 순서 배열 및 매칭 과정을 간단히 수행하루 수 있다. 이 때 그래프를 구성하는 노드(node)들을 기하학적 위치에 따라 순서 배열함으로써 그래프를 구성하는 노드들 사이의 대응 관계를 효율적으로 찾을 수 있도록 하였으며, 또한 왜곡으로 인하여 기호를 표현하는 그래프의 노드가 제대로 추출되지 못한 경우는 기호의 구조를 고려하여 보정해 줄 수 있는 분할 과정을 도입하여 해결하였다. 제안한 방법은 악보의 비음표 기호 인식을 통해 실험하였으며, 실험 결과 95% 정도의 인식률을 얻을 수 있었다.

  • PDF

3D Magnetic Ball을 이용한 필기체 인식 향상 Coding System (Improved Pattern Recoginition Coding System of a Handwriting Character with 3D)

  • 심규승;이재홍;이병엽
    • 한국콘텐츠학회논문지
    • /
    • 제13권9호
    • /
    • pp.10-19
    • /
    • 2013
  • 본 논문에서는 그래프 패턴 인식을 신속히 처리하기 위한 새로운 자성 센서의 개발과 인식 시스템을 제안하고자 하였다. 그래픽을 입력받아 세션화와 균형화를 수행하는데 있어서 특징점의 사전 처리를 선결 수행함으로써 인식 속도를 증강하고 선처리된 특징점을 이용하여 끝점, 굴곡점, 분기점의 특징점을 별도로 추출하지 않는 방법으로 조사하여 모음이나 자음의 부분패턴의 그래프 사전을 비교하는 간단한 구조해석과 인식을 도모하였다. 본 논문의 성능 비교를 위하여 사용자의 필기체를 사전에 등록 인식하고 입력 필기체를 비교 인식하여 Unicode로 변환시켜 비교한 결과 70%의 초기 인식률에서 누적 인공학습 지능 처리 결과 95%의 이상의 인식률을 보여주고 있다.

실행코드 블록 비교 기반의 변종 악성코드 검출 (A Detection of Modificated Malware Based on Comparison of Executable Code Block)

  • 이대로;김태형;김성훈;이승형;이현수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.301-303
    • /
    • 2012
  • 본 논문에서는 알려진 악성코드로부터 악의적인 행위 패턴을 정의하는 방법을 제안하고, 이를 기반으로 변형된 악성코드의 검출 방법을 제안한다. 악의적인 행위 패턴에 대한 정의는 Cross Reference를 기반으로 블록화 한 후 실행코드 블록의 호출 관계에 따른 그래프를 이용하여 정의하였다. 그리고 변형된 악성코드에 대한 검출은 실행코드 내부에서 악의적인 행동 패턴을 찾음으로써 판단한다. 제안된 방법에 대한 실험결과 변형된 악성코드의 검출이 가능함을 확인하였다.

단백질 상호작용 네트워크에서의 단백질 기능예측을 위한 패턴 마이닝 (Prediction of Protein Function using Pattern Mining in Protein-Protein Interaction Network)

  • 김태욱;이미정;이패패;류근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.1115-1118
    • /
    • 2011
  • 단백질 사이의 상호작용 네트워크(PPI network: Protein-Protein Interaction network)를 이용하여 단백질 기능을 예측 하는 것은 단백질 기능 예측 기법들 중에서 중요한 작용을 한다. 하지만 PPI를 이용한 단백질 기능 예측은 기능의 복잡도와 다양성으로 인해 제한적인 결과를 나타내 왔다. 따라서 본 논문에서는 기존의 연구들 보다 높은 정확도로 단백질 기능을 예측하기 위해 기능 예측을 하려는 단백질과 상호작용 하는 단백질들에 그래프 마이닝 기법을 적용하여 빈발 2-노드 상호작용 패턴을 찾고, 그 패턴을 이용하여 단백질 기능을 예측하는 접근법을 제안하였다. 실험데이터로 DIP(Database of Interacting Proteins)에서 제공하는 단백질 상호작용 데이터를 사용하였으며, 다른 기존의 단백질 기능 예측 기법들보다 높은 정확도를 보여주었다.

교통카드 트랜잭션 데이터베이스에서 지하철 탑승 패턴 분류 (Classification of Subway Trip Patterns from Smart Card Transaction Databases)

  • 박종수;김호성;이금숙
    • 한국콘텐츠학회논문지
    • /
    • 제10권12호
    • /
    • pp.91-100
    • /
    • 2010
  • 서울 수도권 지하철 승객들의 탑승 패턴의 특성을 이해하는 것은 효율적인 수도권 지하철 시스템을 입안하는 데 중요하기 때문에 대용량 교통카드 트랜잭션 데이터베이스에서 유용한 패턴을 탐사하거나 귀중한 패턴의 분류에 대한 연구가 진행되어오고 있다. 본 논문에서 새로운 지하철 탑승 분류를 정의하고 하루 약 천만 건 트랜잭션들로 구성된 교통카드 트랜잭션 데이터베이스로부터 지하철 승객들의 11 가지 탑승 패턴을 분류하는 알고리즘을 제안하였다. 제시된 알고리즘을 구현하여 탑승 패턴들을 분류하기 위하여 하루 동안의 교통카드 트랜잭션 데이터베이스에 적용하였다. 실험 결과에서 왕복-탑승 패턴, 통근 패턴, 예상치 못한 흥미로운 패턴들에 초점을 맞추어 분석하였다. 각 분류된 패턴에 대해서 시간대별로 승객수를 지하철 트랜잭션의 승차시간과 하차시간 기준으로 그래프로 설명하여 유용한 패턴의 특성을 이해하도록 하였다.

공공데이터에 적합한 다양한 소셜 그래프 비주얼라이제이션 알고리즘 제안 (Social graph visualization techniques for public data)

  • 이만재;온병원
    • 한국HCI학회논문지
    • /
    • 제10권1호
    • /
    • pp.5-17
    • /
    • 2015
  • 최근 다양한 공공데이터가 개방되고 있으며, 적절한 데이터 마이닝과 시각화 알고리즘을 통해 일반 시민에게 서비스 되고 있다. 이를 통해 정부와 지방자치단체는 공공 정책의 투명성과 효율성을 널리 알릴 수 있을 뿐 아니라, 일반 사용자들이 개방된 공공데이터를 재가공하여 서비스함으로써 관련 산업의 성장을 이끌고 있다. 공공데이터의 최종 사용자는 일반 시민이기 때문에, 누구나 손쉽게 이해할 수 있도록 공공데이터를 적절히 시각화하는 것이 무엇보다 중요하다. 본 연구에서는 공공데이터 비주얼라이제이션의 중요성을 널리 알리기 위해, 일반 국민이 관심을 가질만한 공공데이터로 UN 회원국의 투표 데이터를 고려한다. 외교와 교육 목적으로 그 활용 가치가 높고 데이터를 쉽게 얻을 수 있는 장점이 있다. 또한 적절한 데이터 마이닝과 시각화 과정을 거친다면, 일반 사용자들이 유엔 회원국 간의 투표 성향에 대한 통찰력을 쉽게 얻을 수 있다. 유엔 투표 데이터를 시각화하기 위해서는, 회원국 간의 투표성향 유사도를 측정하고, 이를 바탕으로 소셜 그래프를 구현한다. 그리고 그래프 레이아웃 알고리즘을 적용하여 그래프를 화면에 렌더링 하게 된다. 기존 방법을 이용하여 소셜 그래프를 비주얼라이제이션 할 경우에 그래프의 복잡도가 증가하여 유엔 회원국 간의 투표성향을 파악하는데 큰 어려움이 있다. 이러한 문제를 개선하기 위해, 본 논문에서는 친구 매칭(Friend-Matching), 친구-라이벌 매칭(Friend-Rival Matching), 버블힙(Bubble Heap) 알고리즘들을 차례로 제안한 다. 제안된 알고리즘을 바탕으로, 기존 그래프 비주얼라이제이션을 개선하여 일반 사용자들이 손쉽게 유엔 회원국 간의 투표성향과 관련된 특정 패턴이나 통찰력을 얻는데 큰 도움을 줄 것이다. 또한 웹에서 동작하는 프로토타입을 구현하여, 누구나 방문하여 테스트를 할 수 있다. 웹 페이지 주소: http://datalab.kunsan.ac.kr/politiz/un/

그래프 데이터베이스 기반 AMI 네트워크 장애 분석 (AMI Network Failure Analysis based on Graph Database)

  • 정우철;전문석;최도현
    • 융합정보논문지
    • /
    • 제10권7호
    • /
    • pp.41-48
    • /
    • 2020
  • 최근 전국 각 지역 AMI(Advanced Metering Infrastructure) 원격검침 시스템의 보급사업이 활성화되고 있으며, 전력수요 관리를 위한 양방향 통신 및 보안 요금제 기능 등 다양한 계량 기능을 제공하고 있다. 현재 AMI 시스템은 새로운 내부 IoT 장비 및 네트워크 규모의 증가로 인해 기존 RDB(Relational Database) 기반 장애 분석이 어렵다. 본 연구는 기존 RDB 데이터를 활용하는 새로운 GDB(Graph Database)기반 장애 분석 방법을 제안한다. 내부 임계치와 상태 값 등 누적된 데이터를 통해 새로운 장애 패턴의 상관관계를 분석한다. GDB 기반 시뮬레이션 결과 RDB에서 분석이 어려웠던 새로운 장애 패턴을 예측할 수 있음을 확인하였다.