• Title/Summary/Keyword: 그래프 수학

Search Result 225, Processing Time 0.024 seconds

Composition of Curriculums and Textbooks for Speed-Related Units in Elementary School (초등학교에서 속력 관련 단원의 교육과정 및 교과서 내용 구성에 관한 논의)

  • Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.658-672
    • /
    • 2022
  • The unique teaching and learning difficulties of speed-related units in elementary school science are mainly due to the student's lack of mathematical thinking ability and procedural knowledge on speed measurement, and curriculums and textbooks must be constructed with these in mind. To identify the implications of composing a new science curriculum and relevant textbooks, this study reviewed the structure and contents of the speed-related units of three curriculums from the 2007 revised curriculum to the 2015 revised curriculum and the resulting textbooks and examined their relevance in light of the literature. Results showed that the current content carries the risk of making students calculate only the speed of an object through a mechanical algorithm by memorization rather than grasp the multifaceted relation between traveled distance, duration time, and speed. Findings also highlighted the need to reorganize the curriculum and textbooks to offer students the opportunity to learn the meaning of speed step-by-step by visualizing materials such as double number lines and dealing with simple numbers that are easy to calculate and understand intuitively. In addition, this paper discussed the urgency of improving inquiry performance such as process skills by observing and measuring an actual object's movement, displaying it as a graph, and interpreting it rather than conducting data interpretation through investigation. Lastly, although the current curriculum and textbooks emphasize the connection with daily life in their application aspects, they also deal with dynamics-related content somewhat differently from kinematics, which is the main learning content of the unit. Hence, it is necessary to reorganize the contents focusing on cases related to speed so that students can grasp the concept of speed and use it in their everyday lives. With regard to the new curriculum and textbooks, this study proposes that students be provided the opportunity to systematically and deeply study core topics rather than exclude content that is difficult to learn and challenging to teach so that students realize the value of science and enjoy learning it.

An Analysis on Shortest Path Search Process of Gifted Student and Normal Student in Information (정보영재학생과 일반학생의 최단경로 탐색 과정 분석)

  • Kang, Sungwoong;Kim, Kapsu
    • Journal of The Korean Association of Information Education
    • /
    • v.20 no.3
    • /
    • pp.243-254
    • /
    • 2016
  • This study has produced a checker of the shortest path search problem with a total of 19 questions as a web-based computer evaluation based on the 'TRAFFIC' questions of PISA 2012. It is because the computer has been settled as an indispensable and significant instrument in the process of solving the problems of everyday life and as a media that is underlying in assessment. Therefore, information gifted students should be able to solve the problem using the computer and give clear enough commands to the computer so that it can perform the procedure. In addition, since it is the age that the computational thinking is affecting every sectors, it should give students new educational stimuli. The relationship between the rate of correct answers and the time took to solve the problem through the shortest route search process showed a significant correlation the variable that affected the problem solving as the difficulty of the question rises due to the increase of nodes and edges turned out to be the node than the edge. It was revealed that information gifted students went through algorithmic thinking in the process of solving the shortest route search problem. And It could be confirmed cognitive characteristics of the information gifted students such as 'ability streamlining' and 'information structure memory'.

Analysis of Highschool Students' Error types and Correction in Learning Function (고등학생들의 함수단원 학습과정에서 나타나는 오류유형 분석과 교정)

  • Yang, Ki-Yeol;Jang, You-Sun
    • Journal of the Korean School Mathematics Society
    • /
    • v.13 no.1
    • /
    • pp.23-43
    • /
    • 2010
  • This study is to investigate how much highschool students, who have learned functional concepts included in the Middle school math curriculum, understand chapters of the function, to analyze the types of errors which they made in solving the mathematical problems and to look for the proper instructional program to prevent or minimize those ones. On the basis of the result of the above examination, it suggests a classification model for teaching-learning methods and teaching material development The result of this study is as follows. First, Students didn't fully understand the fundamental concept of function and they had tendency to approach the mathematical problems relying on their memory. Second, students got accustomed to conventional math problems too much, so they couldn't distinguish new types of mathematical problems from them sometimes and did faulty reasoning in the problem solving process. Finally, it was very common for students to make errors on calculation and to make technical errors in recognizing mathematical symbols in the problem solving process. When students fully understood the mathematical concepts including a definition of function and learned procedural knowledge of them by themselves, they did not repeat the same errors. Also, explaining the functional concept with a graph related to the function did facilitate their understanding,

  • PDF

A Comparative Study of Fuzzy Based Frequency Ratio and Cosine Amplitude Method for Landslide Susceptibility in Jinbu Area (빈도비와 Cosine Amplitude Method를 이용한 진부지역의 퍼지기반 산사태 취약성 예측기법 비교 연구)

  • Kim, Kang Min;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.195-214
    • /
    • 2017
  • Statistical landslide susceptibility analysis, which is widely used among various landslide susceptibility analysis approaches, predicts the unstable area by analyzing statistical relationship between landslide occurrence locations and landslide controlling factors. However, uncertainties are involved in the procedures of the susceptibility analysis and therefore, fuzzy approach has been used to deal properly with uncertainties. The fuzzy approach used fuzzy set theory and fuzzy membership function to quantify uncertainties involved in landslide controlling factors. Various fuzzy approaches were suggested in the procedure of the membership value determination and fuzzy operation in the previous researches. However, few studies were carried out to compare the analysis results obtained from various approaches for membership function determination and fuzzy operation. Therefore, in this study, the authors selected Jinbu area, which a large number of landslides were occurred at in 2006, to apply two most commonly used methods, the frequency ratio and the cosine amplitude method to derive membership values for each controlling factor. In addition, the integration of different thematic layers to produce landslide susceptibility map was performed by several fuzzy operators such as AND, OR, algebraic product, algebraic sum and Gamma operator. The results of the landslide susceptibility analysis using two different methods for the determination of fuzzy membership values and various fuzzy operators were compared on the basis of ROC graph to check the feasibility of the fuzzy based landslide susceptibility analysis.

Simulation-based Education Model for PID Control Learning (PID 제어 학습을 위한 시뮬레이션 기반의 교육 모델)

  • Seo, Hyeon-Ho;Kim, Jae-Woong;Park, Seong-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.286-293
    • /
    • 2022
  • Recently, the importance of elemental technologies constituting smart factories is increasing due to the 4th Industrial Revolution, and simulation is widely used as a tool to learn these technologies. In particular, PID control is an automatic control technique used in various fields, and most of them analyze mathematical models in certain situations or research on application development with built-in controllers. In actual educational environment requires PID simulator training as well as PID control principles. In this paper, we propose a model that enables education and practice of various PID controls through 3D simulation. The proposed model implemented virtual balls and Fan and implemented PID control by configuring a system so that the force can be lifted by the air pressure generated in the Fan. At this time, the height of the ball was expressed in a graph according to each gain value of the PID controller and then compared with the actual system, and through this, satisfactory results sufficiently applicable to the actual class were confirmed. Through the proposed model, it is expected that the rapidly increasing elemental technology of smart factories can be used in various ways in a remote classroom environment.