DOI QR코드

DOI QR Code

A Comparative Study of Fuzzy Based Frequency Ratio and Cosine Amplitude Method for Landslide Susceptibility in Jinbu Area

빈도비와 Cosine Amplitude Method를 이용한 진부지역의 퍼지기반 산사태 취약성 예측기법 비교 연구

  • Kim, Kang Min (Dept. of Geoinformation Engineering, Sejong University) ;
  • Park, Hyuck Jin (Dept. of Geoinformation Engineering, Sejong University)
  • 김강민 (세종대학교 지구정보공학과) ;
  • 박혁진 (세종대학교 지구정보공학과)
  • Received : 2017.03.31
  • Accepted : 2017.06.14
  • Published : 2017.06.28

Abstract

Statistical landslide susceptibility analysis, which is widely used among various landslide susceptibility analysis approaches, predicts the unstable area by analyzing statistical relationship between landslide occurrence locations and landslide controlling factors. However, uncertainties are involved in the procedures of the susceptibility analysis and therefore, fuzzy approach has been used to deal properly with uncertainties. The fuzzy approach used fuzzy set theory and fuzzy membership function to quantify uncertainties involved in landslide controlling factors. Various fuzzy approaches were suggested in the procedure of the membership value determination and fuzzy operation in the previous researches. However, few studies were carried out to compare the analysis results obtained from various approaches for membership function determination and fuzzy operation. Therefore, in this study, the authors selected Jinbu area, which a large number of landslides were occurred at in 2006, to apply two most commonly used methods, the frequency ratio and the cosine amplitude method to derive membership values for each controlling factor. In addition, the integration of different thematic layers to produce landslide susceptibility map was performed by several fuzzy operators such as AND, OR, algebraic product, algebraic sum and Gamma operator. The results of the landslide susceptibility analysis using two different methods for the determination of fuzzy membership values and various fuzzy operators were compared on the basis of ROC graph to check the feasibility of the fuzzy based landslide susceptibility analysis.

산사태 위험도 분석에서 범용적으로 활용되고 있는 통계적 취약성 분석 기법은 과거에 발생한 산사태의 위치 정보와 산사태 영향 인자들 사이의 상관관계를 통계적으로 분석하여 산사태 발생 가능성이 있는 지역을 예측하는 기법이다. 이러한 취약성 분석 기법에는 다양한 불확실성이 개입되는데 이러한 불확실성을 고려하기 위한 방법의 하나로 퍼지 기법이 활용되고 있다. 퍼지 기법은 퍼지 집합 이론이라는 수학적인 개념을 통해 불확실성을 표현하는 방법으로 특정 인자가 나타날 수 있는 정도를 소속 함수로 표현한다. 퍼지 기법은 영향 인자들의 소속 함수를 결정하는 방법과 각 영향 인자들의 소속 함수를 결합하는 연산 과정에 다양한 접근 방식이 존재하며, 기존의 연구들은 다양한 접근 방식을 활용하여 분석을 수행하여 왔다. 그러나 이렇게 다양한 접근 방식이 어떠한 결과의 차이를 초래하는지를 비교하는 연구는 수행된 사례가 적은 편이다. 따라서 본 연구에서는 진부 지역을 대상으로 빈도비를 활용하여 소속 함수를 산정하는 기법과 코사인 진폭법을 활용하여 소속 함수를 산정하는 기법을 비교하여 보았다. 또한 다양한 퍼지 연산 기법을 활용하여 산사태 취약성을 산정하고 이들 결과를 비교해 보았으며 ROC 그래프 기법을 활용하여 결과의 정확도를 산정하고 분석 기법의 적절성을 분석하였다.

Keywords

References

  1. Bui, D.T., Pradhan, B., Lofman, O., Revhaug, I. and Dick, O.B. (2012) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena, v.96, p.28-40. https://doi.org/10.1016/j.catena.2012.04.001
  2. Carrara, A., Cardinali, M. and Guzzetti, F. (1992) Uncertainty in assessinglandslide hazard and risk. ITC Journal, v.2, p.172-183.
  3. Chung, C.F. and Fabbri, A.G. (1999) Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, v.40, p.381-391.
  4. Choi, J.K., Kim, K.D., Lee, S.R. and Won, J.S. (2010) Application of a fuzzy operator to susceptibility estimations of coal mine subsidence in Taebaek City, Korea. Environ. Earth. Sci., v.59, p.1009-1022. https://doi.org/10.1007/s12665-009-0093-6
  5. Corominas, J., van Wenten, C., Frattini, P., Cascini, L. and Malet, J.P. (2014) Recommendations for the quantitative analysis of landslide risk. Bull Engineering Geological Environment, v.73, p.209-263.
  6. Ercanoglu, M. and Gokceoglu, C. (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area(West Black Sea Region, Turkey). Engineering Geology, v.75, p.229-250. https://doi.org/10.1016/j.enggeo.2004.06.001
  7. Fawcett, T. (2006) An introduction to ROC analysis. Pattern Recognition Letters, v.27, p.861-874. https://doi.org/10.1016/j.patrec.2005.10.010
  8. Kang, T.J., Park, H.J., Chae, B.G., Jeng, N.S., You, K.H. (2010) Analysis of landslide susceptibility in Pyeong-Chang area using fuzzy relation method. The Journal of Engineering Geology, v.20, p.217-222.
  9. Kanungo, D.P., Arora, M.K., Sarkar, S. and Gupta, R.P. (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, v.85, p.347-366. https://doi.org/10.1016/j.enggeo.2006.03.004
  10. Kanungo, D.P, Arora, M.K, Sarkar, S. and Gupta, R.P. (2009) A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, v.3, p.30-43. https://doi.org/10.1080/17499510802541417
  11. Kayastha, P., Bijukchen, S.M., Dhital, M.R. and Florimond, D.S. (2013) GIS based landslide susceptibility mapping using a fuzzy logic approach: a case study from Ghurmi-Dhad Khola area, Eastern Nepal. Journal Geological Society of India, v.82, p.249-261. https://doi.org/10.1007/s12594-013-0147-y
  12. Kim, J.Y. and Park, H.J. (2013) A comparative study of fuzzy relationship and ANN for landslide susceptibility in Pohang area. Econ. Environ. Geol., v.46, p.301-312. https://doi.org/10.9719/EEG.2013.46.4.301
  13. Kim, Y.S. (2010) A development of prediction model for groundwater productivity potential based on probability. Kyungpook National Univ., Degree Thesis.
  14. Lee, J.H. and Park, H.J. (2012) Assessment of landslide susceptibility using a coupled infinite slope model and hydrologic model in Jinbu area, Gangwon-Do. Econ. Environ. Geol., v.45, p.697-707. https://doi.org/10.9719/EEG.2012.45.6.697
  15. Lee, S. (2007) Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environmental Geology, v.52, p.615-623. https://doi.org/10.1007/s00254-006-0491-y
  16. Lee, S., Choi, U., Chae, U. and Chang, B. (2002a) Landslide susceptibility analysis using weight of evidence. Geosciences and Remote Sensing Symposium.
  17. Lee, S., Choi, K. and Min, K. (2002b) Landslide susceptibility analysis and verification using the bayesian probability model. Econ. Environ. Geol., v.43, p.120-131. https://doi.org/10.1007/s00254-002-0616-x
  18. Lee, S., Lee, M.J. and Won, J.S. (2004) Study on landslide using GIS and Remote Sensing at Kangneung area(?)-Landslide susceptibility mapping and Cross-Validation using the probability technique. Econ. Environ. Geol., v.37, p.521-532.
  19. Mark, R. and Ellen, S. (1995), Statistical and simulation models for mapping debris flow hazard. Kluwer, Dordrecht, p.93-106.
  20. Oh, H.J. (2010) Landslide detection and landslide susceptibility mapping using aerial photos and artificial neural networks. Korean Journal of Remote Sensing, v.26, p.47-57. https://doi.org/10.7780/kjrs.2010.26.1.47
  21. Park, H.J. (2008) Evaluation of the Probability of Failure in Rock Slope Using Fuzzy Reliability Analysis. Econ. Environ. Geol., v.41, p.763-771.
  22. Park, I.H., Lee, J.Y. and Lee, S.R. (2014) Ensemble of ground subsidence hazard maps using fuzzy logic. Cent. Eur. J. Geosci., v.6(2), p.207-218.
  23. Pradhan, B., Lee, S.R. and Buchroithner M.F. (2009) Use of geospatial data and fuzzy algebraic operators to landslide-hazard mapping, Appl. Geomat., v.1, p.3-15. https://doi.org/10.1007/s12518-009-0001-5
  24. Pradhan, B. and Lee, S. (2010) Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, v.7, p.13-30. https://doi.org/10.1007/s10346-009-0183-2
  25. Pradhan, B. (2011a) Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modeling. Environmental and Ecological Statistics, v.18, p.471-493. https://doi.org/10.1007/s10651-010-0147-7
  26. Pradhan, B. (2011b) Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three areas in Malaysia. Environmental Earth Sciences, v.63, p.329-349. https://doi.org/10.1007/s12665-010-0705-1
  27. Ross, T.J. (2004) Fuzzy logic with engineering applications, 2nd Edition, p.72-73.
  28. Theodosis K. and Tim D. (2014) Assessment of rainfallgenerated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: application to western southern Alps of New Zealand, Landslides, v.12, doi:10.1007/s10346-0533-6.
  29. Vahidnia, M., Alesheikh, A., Alimohammadi, A. and Hosseinali, F. (2009) Design and development of an intelligent extension for mapping landslide susceptibility using artificial neural network. Computational Science and Its Application, v.5592, p.17-32.
  30. VanWesten, C.J. and Terlien, M.T.J. (1996) An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surface Processes, v.21, p.853-868. https://doi.org/10.1002/(SICI)1096-9837(199609)21:9<853::AID-ESP676>3.0.CO;2-C
  31. Wang, H.B. and Sassa, K. (2005) Comparative evaluation of landslide susceptibility in Minamata area, Japan. Environmental Geology, v.47, p.956-966. https://doi.org/10.1007/s00254-005-1225-2
  32. Yilmaz, I. (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environment Earth Sciences, v.61, p.821-836. https://doi.org/10.1007/s12665-009-0394-9
  33. Zadeh, L.A. (1965) Fuzzy sets. Information and Control, v.8, p.338-353. https://doi.org/10.1016/S0019-9958(65)90241-X