차량용 내비게이션의 빠른 확산과 스마트폰 등 개인 단말기의 측위 기술 발달로 사용자 중심위치기반서비스, 특히 보행자 내비게이션 서비스에 대한 관심이 증대되고 있다. 보행자 내비게이션 서비스를 위한 핵심정보인 수치지도는 대용량이고 짧은 갱신주기를 요구하는 경우가 많아 수치지도의 효율적인 갱신이 중요한 이슈가 된다. 본 연구에서는 구축시기가 상이한 이종의 도로망 데이터 셋에 형상유사도 기반 면 객체 매칭을 적용하여 변화 탐지하는 기법을 제안하였다. 변화탐지에 앞서 이종의 도로망 데이터 셋의 면 객체 매칭에서 탐지될 수 있는 갱신 유형을 정의하였다. 면 객체 매칭 기반 변화 탐지를 위하여 이종의 두 도로망 데이터 셋의 선형인 도로객체를 이들로 둘러싸인 면인 블록으로 변환하였다. 변환된 블록을 중첩하여 중첩된 블록 간의 형상유사도를 계산하고, 이 값이 0.6 이상인 것을 후보 블록 쌍으로 추출하였다. 객체 유형별로 이분 그래프 군집화와 오목다각형 특성을 적용하여 정의된 갱신유형별 블록 쌍을 탐지하고, 해당 블록 쌍을 구성하거나 내부에 있는 도로 세그먼트 간의 프레셰 거리를 계산하였다. 이때, 프레셰 거리가 50 이상인 도로명주소기본도 도로구간의 도로객체가 갱신 도로객체로 추출된다. 그 결과 0.965의 높은 탐색율을 보여 제안된 기법이 이종의 도로망 데이터 셋의 선형 객체의 변화탐지에 적용될 수 있음을 확인할 수 있었다.
관계추출은 문서 혹은 문장에서 자동으로 엔티티들간의 관계를 추출하는 기술로, 비정형 데이터를 정형데이터로 변환하기에 자연어 처리 중에서도 중요한 분야중 하나이다. 그 중에서도 대화 관계추출은 기존의 문장 단위의 관계추출과는 다르게 긴 길이에 비해 적은 정보의 양, 빈번하게 등장하는 지시대명사 등의 특징을 가지고 있어 주어와 목적어 사이의 관계를 예측하기에 어려움이 있었다. 본 연구에서는 이러한 어려움을 극복하기 위해 대화의 특성을 고려한 대화 그래프를 구축하고 이를 이용한 모델을 제안한다. 제안하는 모델은 상호참조 정보와 문맥정보를 더 반영한 그래프를 통해 산발적으로 퍼져있는 정보를 효율적으로 수집하고, 지시대명사로 인해 어려워진 중요 발화 파악 능력을 증진시켰다. 또한 이를 실험적으로 보이기 위하여 대화 관계추출 데이터셋에 실험해본 결과, 기존 베이스라인 보다 약 10 % 이상의 높은 F1점수를 달성하였다.
국내 씬파일러(Thin Filer)의 수가 1200만명을 넘어서며, 금융 업계에서 씬파일러의 신용을 정확히 평가하여 우량고객을 선별해 대출을 공급하는 시도가 많아지고 있다. 특히, 차주의 신용정보에 존재하는 비선형성을 반영하여 채무불이행을 예측하기 위해서 다양한 머신러닝 알고리즘을 활용한 연구가 진행되고 있다. 그 중 그래프 신경망 구조(Graph Neural Network)는 일반적인 신용정보 외에 대출자 간의 네트워크 정보를 반영할 수 있다는 점에서 데이터가 부족한 씬파일러의 채무 불이행 예측에서 주목할 만하다. 그러나, 그래프 신경망을 활용한 기존의 연구들은 신용정보에 존재하는 다양한 범주형 변수를 적절히 처리하지 못했다는 한계가 있었다. 이에 본 연구는 범주형 변수의 맥락적 정보를 추출할 수 있는 트랜스포머 메커니즘(Transformer mechanism)과 대출자 간 네트워크 정보를 반영할 수 있는 그래프 합성곱 신경망(Graph Convolutional Network)를 결합하여 효과적으로 씬파일러의 채무 불이행 예측이 가능한 TeGCN (Transformer embedded Graph Convolutional Network)를 제안한다. TeGCN는 일반 대출자 데이터셋과 씬파일러 데이터셋에 대하여 모두 베이스 라인 모델 대비 높은 성능을 보였으며, 특히 씬파일러 채무 불이행 예측에 우수한 성능을 달성했다. 본 연구는 범주형 변수가 많은 신용정보와 데이터가 부족한 씬파일러의 특성에 적합한 모델 구조를 결합하여 높은 채무 불이행 예측 성능을 달성했다는 시사점이 있다. 이는 씬파일러의 금융소외문제를 해결하고 금융업계에서 씬파일러를 대상으로 추가적인 수익을 창출하는데 기여할 수 있을 것이다.
최근 구글, 아마존, LOD 등을 중심으로 지식 그래프(Knowledge graph)와 같은 검색 고도화 연구가 활발히 수행되고 있다.그러나 대규모 지식 그래프 인덱싱 시스템에서 데이터가 어떻게 임베딩(embedding)되고, 딥러닝(deep learning) 되는지는 상대적으로 거의 연구가 되지 않고 있다. 이에 본 논문에서는 임베딩 모델에 대한 성능평가를 통해 데이터셋에 대해 어떤 모델이 가장 좋은 지식 임베딩 방법을 도출하는지 분석한다.
문맥 독립 주장 탐지는 논점에 대한 정보가 주어지지 않은 상황에서 문서 내부의 문장들 또는 단일 문장에 대한 주장을 탐지하는 작업이다. 본 논문에서는 GCN 계층을 통해 얻은 구조 정보와 사전 학습된 언어 모델을 통해 얻은 의미 정보를 활용하는 문맥 독립 주장 탐지 모델을 제안한다. 특히 문장의 전체 구조 정보를 나타내는 부모-자식 그래프와 문장의 특정 구조 정보를 나타내는 조부모-조손 그래프를 활용해 추가적인 구조 정보를 활용하여 주장 탐지 성능을 향상시켰다. 제안 모델은 IAM 데이터셋을 사용한 실험에서 기본 RoBERTa base 모델과 비교하여 최대 2.66%p의 성능 향상을 보였다.
한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔고 그 중 그래프 기반 의존 파싱 방법은 문장 내의 모든 단어에 대해 인코딩한 후 지배소, 의존소에 대한 MLP를 적용하여 각각 표상을 얻고 Biaffine 어텐션을 통해 모든 단어 쌍에 대한 그래프 점수를 얻고 트리를 생성하는 방법이 대표적이다. Biaffine 어텐션 모델에서 문장 내의 각 단어들은 구문 트리 내의 서브트리의 역할을 하지만 두 단어간의 의존성만을 판단하기 때문에 서브 트리의 정보를 이용할 수 없다는 단점이 존재한다. 본 연구에서는 이러한 단점을 해결하기 위해 제안된 Span-Span(서브트리-서브트리)로의 서브트리 정보를 이용할 수 있도록 하는 기계 독해 기반 의존 파싱 모델을 한국어 구문 분석 데이터 셋에 적용하여 소폭의 성능향상을 얻었다.
그래프 표현 학습을 위한 노드 임베딩 기법은 그래프 마이닝에서 양질의 결과를 얻는 데 중요한 역할을 한다. 지금까지 대표적인 노드 임베딩 기법은 동종 그래프를 대상으로 연구되었기에, 간선 별로 고유한 의미를 갖는 지식 그래프를 학습하는 데 어려움이 있었다. 이러한 문제를 해결하고자, 기존 Triple2Vec 기법은 지식 그래프의 노드 쌍과 간선을 하나의 노드로 갖는 트리플 그래프를 학습하여 임베딩 모델을 구축한다. 하지만 Triple2Vec 임베딩 모델은 트리플 노드 간 관련성을 단순한 척도로 산정하기 때문에 성능을 높이는데 한계를 가진다. 이에 본 논문은 Triple2Vec 임베딩 모델을 개선하기 위한 그래프 합성곱 신경망 기반의 특징 추출 기법을 제안한다. 제안 기법은 트리플 그래프의 인접성 벡터(Neighborliness Vector)를 추출하여 트리플 그래프에 대해 노드 별로 이웃한 노드 간 관계성을 학습한다. 본 논문은 DBLP, DBpedia, IMDB 데이터셋을 활용한 카테고리 분류 실험을 통해, 제안 기법을 적용한 임베딩 모델이 기존 Triple2Vec 모델보다 우수함을 입증한다.
최근 데이터를 활용한 분석에 대한 수요와 함께 분석 데이터인 지식 그래프의 크기는 점차 증가하여, 웹에서 수집한 데이터를 지식 그래프로 추출하였을 때 약 820억개의 엣지(Edge)를 가지는 수준까지 도달하였다. 많은 지식 그래프들은 웹 자원에 대한 메타데이터를 표현하기 위한 W3C 표준인 RDF(Resource Description Framework) 형식으로 표현되며, RDF 특성으로 인해 기존의 RDF 저장소들은 대량 RDF 데이터를 압축하고 저장할 때 처리 시간의 오버헤드가 발생하는 문제점을 가진다. 본 논문은 이러한 문제점을 개선하기 위해, 맵리듀스를 사용하여 대량 RDF 데이터를 정수 ID로 압축 변환하고, 수직 분할하여 저장하는 방법을 제안한다. 본 논문에서 제안한 방법은 RDF-3X와 비교하였을 때 최대 25.2배, H2RDF+와 비교하였을 때 최대 3.7배까지의 높은 성능 향상을 보였다.
본 논문에서는 하이퍼그래프의 고유벡터를 척도로 하여 fMRI기반 Brain Network를 분석하여 중요한 허브노드를 찾는 방법론을 제시한다. 이 방법을 비디오게임을 수행하면서 촬영한 기능적 자기뇌영상(fMRI) 데이터인 PBAIC 2007 데이터셋에 대하여 그 유용성을 검증하였다. 이 데이터는 각 20분씩 세 세션을 촬영한 것이며 처음 두 세션에는 13가지의 감정 항목의 평가치가 각 스캔마다 주어진다. 한 피험자의 첫번째 세션 데이터로부터 13가지 감정 항목에 대하여 상관관계가 높은 각각의 복셀(voxel)들을 추출하였다. 이 13가지의 복셀들의 집합들을 각각 하이퍼에지로 보고 하이퍼그래프를 구성하였다. 하이퍼그래프로부 터 인접 행렬(adjacency matrix)를 구성한 후 고유치(eigenvalue)와 고유벡터(eigenvector)를 구하였다. 여기서 고유치가 가장 큰 고유벡터의 원소들은 각 복셀들의 중앙성(centrality), 즉 중요성을 나타내며 이로부터 감정과 관련된 중요한 허브 복셀들과 그들의 국소적 집합인 모듈을 찾았다. 모듈들은 감정 및 작업기억(working memory)과 관련된 뇌 영역들의 클러스터(cluster)로 추정된다.
재귀적 질의 알고리즘은 소셜네트워크 서비스의 도달가능 질의와 같은 많은 응용프로그램에 사용된다. 하지만 최근에 소셜네트워크 서비스의 규모가 커짐에 따라 그래프 데이터의 크기 또한 커지고 있다. 따라서 재귀적 질의 알고리즘을 싱글 머신에서 가동하는 것이 거의 불가능해졌다. 본 논문에서는 이러한 문제점을 해결하기 위해서 고속 분산 인메모리 플랫폼인 스파크와 트위스터에서 재귀적 질의 알고리즘을 구현하였다. 구현된 알고리즘은 아마존 EC2 머신 50대에서 Real-world 데이터 셋인 LiveJournal과 ClueWeb으로 실험하였다. 실험결과 상대적으로 노드 수는 적고 평균 차수(degree)는 높은 LiveJournal 데이터 셋에서는 스파크에서 구현된 재귀적 알고리즘의 성능이 트위스터의 것보다 좋았다. 그리고 상대적으로 노드 수는 많고 평균 차수는 낮은 ClueWeb 데이터 셋에서는 트위스터에서 구현된 재귀적 알고리즘의 성능이 스파크의 것보다 좋았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.