• Title/Summary/Keyword: 균

Search Result 19,214, Processing Time 0.039 seconds

Examination of the Central Metabolic Pathway With Genomics in Lactiplantibacillus plantarum K9 (Lactiplantibacillus plantarum K9 유전체 분석을 통해 필수 물질대사 경로의 탐색)

  • Sam Woong Kim;Young Jin Kim;Hyo In Choi;Sang Won Lee;Won-Jae Chi;Woo Young Bang;Tae Wan Kim;Kyu Ho Bang;Sang Wan Gal
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.465-475
    • /
    • 2024
  • Lactiplantibacillus plantarum K9 is a probiotic strain that can be utilized from various bioactive substances isolated from Protaetia brevitarsis seulensis larvae. In this study, a genetic analysis of L. plantarum K9 revealed the existence of a bacterial chromosome and three plasmids. The glycolysis pathway and pentose phosphate pathway were examined for their normal functioning via an analysis of the core metabolic pathways of L. plantarum K9. Since the key enzymes, fluctose-1,6-bisphospatase (EC: 3.1.3.11) and 6-phosphogluconate dehydratase (EC: 4.2.1.12)/2-keto-deoxy-6-phosphogluconate (KDPG) aldolase (EC: 4.2.1.55), of gluconeogenesis and the ED pathway were not identified from the L. plantarum K9 genome, we suggest that gluconeogenesis and the ED pathway are not performed in L. plantarum K9. Additionally, while some enzymes, related to fumarate and malate biosyntheses, involved in the TCA cycle were identified from L. plantarum K9, the enzymes associated with the remaining TCA cycle were absent, indicating that the TCA cycle cannot proceed. Meanwhile, based on our findings, we propose that the oxidative electron transport system performs class IIB-type (bd-type) electron transfer. In summary, we assert that L. plantarum K9 performs homolactic fermentation, executes gluconeogenesis and the pentose phosphate pathway, and carries out energy metabolism through the class IIB-type oxidative electron transport system. Therefore, we suggest that L. plantarum K9 has relatively high lactic acid production, and that it has excellent antibacterial activity, as a result, compared to other lactic acid bacterial strains. Moreover, we speculate that L. plantarum K9 has an oxidative electron transport capability, indicating that it is highly resistant to oxygen and suggesting that it has fine cultivation characteristics, which collectively make it highly suitable for use as a probiotic.

Examination of Antioxidant and Immune-enhancing Functional Substances in Fermented Sea Cucumber (발효해삼의 항산화 및 면역강화 기능성 물질의 분석)

  • Sam Woong Kim;Ga-Hee Kim;Beom Cheol Kim;Lee Yu Bin;Lee Ga Bin;Sang Wan Gal;Chul Ho Kim;Woo Young Bang;Kyu Ho Bang
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.485-492
    • /
    • 2024
  • Sea cucumbers contain more than 50% protein in their solid content, and they also possess various bioactive substances such as saponins and mucopolysaccharides. This study analyzed the activities of various enzymes derived from Bacillus and lactic acid bacteria and determined to degrade the components of sea cucumbers. Among the analyzed strains, B. subtilis K26 showed the highest activities in protease and xylanase and relatively high activity in cellulase. Accordingly, samples of sea cucumber and water were mixed in equal proportions, sterilized, and then fermented by inoculating them with B. subtilis K26. Following this, a higher amino acid content was observed between 1.5 and 7.5 hr, a lower residual solid content in this time, and a lesser fermentation odor. The saponin content in fermented sea cucumber powder extracted with butanol was measured to be 1.12 mg/g. The chondroitin sulfate content was evaluated to be 5.11 mg/g in raw sea cucumber. The total polyphenol content, flavonoid content, and antioxidant activities were 6.95 mg gallic acid equivalent/g, 3.69 mg quercetin equivalent/g, and 3.69 mg quercetin equivalent/g in raw sea cucumber, respectively. Moreover, the DNA damage protective effect of fermented sea cucumber extract was found to be concentration-dependent, with a very strong effect at very low concentrations. Overall, we suggest that sea cucumber fermented with B. subtilis K26 has a high potential as a food for inhibiting oxidation, enhancing immunity, and improving muscle function in the human body thanks to its high free amino acid content.

The protective effect of Eucommia ulmoides leaves on high glucose-induced oxidative stress in HT-29 intestinal epithelial cells (고당으로 유도된 산화적 스트레스에 대한 두충 잎 추출물의 장 상피 세포 보호 효과)

  • Han Su Lee;Jong Min Kim;Hyo Lim Lee;Min Ji Go;Ju Hui Kim;Hyun Ji Eo;Chul-Woo Kim;Ho Jin Heo
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.183-196
    • /
    • 2024
  • This study investigated the protective effect of the aqueous extract of Eucommia ulmoides leaves (AEEL) against high glucose-induced human colon epithelial HT-29 cells. The 2,2'-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazy (DPPH) radical scavenging activities, ferric reducing/antioxidant power (FRAP), and malondialdehyde (MDA) analyses indicated that AEEL had significant antioxidant activities. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that AEEL increased cell viability against high glucose-, H2O2-, and lipopolysaccharide (LPS)-induced cytotoxicity in HT-29 cells. Also, the 2'-7'-dichlorodihydrofluorescein diacetate (DCF-DA) assay indicated that AEEL decreased intracellular reactive oxygen species (ROS) against high glucose-, H2O2-, and lipopolysaccharide (LPS)-induced cytotoxicity in HT-29 cells. AEEL showed inhibitory activities against α-glucosidase and inhibited the formation of advanced glycation end products (AGEs). AEEL showed significant positive effects on the viability and titratable acidity of L. brevis. The high-performance liquid chromatogram (HPLC) analysis identified chlorogenic acid and rutin as the major compounds of AEEL. These results suggested that AEEL has the potential to be used as a functional food source to suppress blood glucose levels and protect the gut from high glucose-induced oxidative stress.

Effectiveness of controlled atmosphere container on the freshness of exported PMRsupia melon (CA 컨테이너를 이용한 수출 멜론의 선도유지 효과)

  • Haejo Yang;Min-Sun Chang;Puehee Park;Hyang Lan Eum;Jae-Han Cho;Ji Weon Choi;Sooyeon Lim;Yeo Eun Yun;Han Ryul Choi;Me-Hea Park;Yoonpyo Hong;Ji Hyun Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.822-832
    • /
    • 2023
  • This study investigates the effectiveness of CA (controlled atmosphere) containers in maintaining the freshness of exported melons. The melons were harvested on June 5, 2023, in the Yeongam area of Jeollanam-do, Korea. The CA container was loaded with melon samples packed in an export box. The temperature inside the container was set at 4℃, while the gas composition was set at 5% oxygen, 12% carbon dioxide, and 83% nintrogen. Following two weeks of simulated transportation, quality analysis was conducted at 10℃. The melons were inoculated with spore suspensions, and the decay rate was determined to investigate the effect of the gas composition inside the CA container on suppressing the occurrence of Penicillium oxalicum in melons. The results were compared with a Reefer container set at the same temperature. The samples transported in the CA container exhibited lower weight loss. The melon pulp softening, respiration rate, and ethylene production were slower using the CA container. Moreover, the decay rate during the distribution period in the CA container was lower than in the Reefer container. In contrast, the firmness of melons transported in the Reefer container decreased significantly (from 9.03N to 5.18N) immediately after transportation. The soluble solid content (SSC) of melons transported in the Reefer container also decreased rapidly. The results suggested that the CA container is the optimal export container for maintaining the freshness of melons.

Changes in quality characteristics of makjang depending on fermentation location and complex starters (발효 장소와 복합 종균에 따른 막장의 품질 특성 변화)

  • Jieon Park;Myeong-Hui Han;Woosoo Jeong;Soo-Hwan Yeo;So-Young Kim
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1056-1071
    • /
    • 2023
  • This study aimed to investigate the quality and microbial population changes for 90 days under two fermentation conditions, outdoors and indoors (35℃), with starters (single or mixed) in soybean paste. Bacillus velezensis NY12-2 (S1), Debaryomyces hansenii D5-P5 (S2), Enterococcus faecium N78-11 (S3), and their mixtures (M) were used for the makjang fermentation. The content of amino-type nitrogen among the makjang samples was highly shown in the indoors, followed by M, S3, and S2. The glutamic and aspartic acid contents in the M sample fermented in the indoors showed the highest values of 867.42±77.27 and 243.20±15.79 mg/g, respectively. By the electronic tongue analysis, the M sample fermented in the indoors exhibited lower saltiness and higher umami than the others. Consequently, we expect that using mixed strains, such as Bacillus, Debaryomyces, and Enterococcus, under constant conditions showed potential to the quality improvement of soy products.

Colletotrichum Diversity within Different Species Complexes Associated with Fruit Anthracnose in South Korea and Their Fungicides In-Vitro Sensitivity (국내 과실 탄저병을 일으키는 종 복합체와 종 다양성 및 살균제 감수성)

  • Taehyun Chang;Oliul Hassan;Jong Yeob Jeon;Chi Hyun Kim;Dae Min Lee;Ju Sung Kim;Eun Chan Kang;Jaewon Kim
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.345-362
    • /
    • 2023
  • Anthracnose, caused by the Colletotrichum genus, comprises a significant number of plant pathogens and poses a major threat to fruit production worldwide, including South Korea. Colletotrichum species were identified associated with anthracnose in fruits such as apple, persimmon, plum, peach, jujube, walnut, and grape. A polyphasic approach, including morphology, multigene phylogenetics, and pathogenicity testing, was used. Additionally, the in-vitro sensitivity of identified Colletotrichum species to common fungicides was also evaluated. A total of nine Colletotrichum species within two complexes, namely gloeosporioides and acutatum, have been identified as the causal agents of anthracnose in common fruits in South Korea. In the gloeosporioides complex, we found Colletotrichumaenigma, C. fructicola, C. gloeosporioides, C. horii, C. siamense, and C. viniferum. Meanwhile, in the acutatum complex, C. fioriniae, C. nymphaeae, and C. orientalis were identified. Notably, C. fructicola, C. siamense, C. fioriniae, and C. nymphaeae were reported for the first time from apple, C. siamense, C. fioriniae and C. nymphaeae from plum, C. siamense, C. fructicola, and C. fioriniae frompeach, C. siamense and C. horii from persimmon, C. fioriniae from Omija (Schisandra), C. orientalis from walnut, C. nymphaeae from jujube, and C. aenigma, C. fructicola, and C. siamense fromgrape. Fungicide sensitivity tests revealed significant variation in the EC50 values among specific Colletotrichum species when exposed to different fungicides. Moreover, the same Colletotrichum species isolated from different host plants displayed varying sensitivity to the same fungicide.

Comparison of In Vitro, Ex Vivo, and In Vivo Antibacterial Activity Test Methods for Hand Hygiene Products (손 위생 제품에 대한 in vitro, ex vivo, in vivo 항균 시험법 비교)

  • Daeun Lee;Hyeonju Yeo;Haeyoon Jeong
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.1
    • /
    • pp.35-43
    • /
    • 2024
  • Numerous methods have been applied to assess the antibacterial effectiveness of hand hygiene products. However, the different results obtained through various evaluation methods have complicated our understanding of the real efficacy of the products. Few studies have compared test methods for assessing the efficacy of hand hygiene products. In particular, reports on ex vivo pig skin testing are limited. This study aimed to compare and characterize the methodologies applied for evaluating hand hygiene products, involving in vitro, ex vivo, and in vivo approaches, applicable to both leave-on sanitizers and wash-off products. Our further aim was to enhance the reliability of ex vivo test protocols by identifying influential factors. We performed an in vitro method (EN1276) and an in vivo test (EN1499 and ASTM2755) with at least 20 participants, against Serratia marcescens or Escherichia coli and Staphylococcus aureus. For the ex vivo experiment, we used pig skin squares prepared in the same way as those used in the in vivo test method and determined the optimal treated sample volumes for sanitizers and the amount of water required to wash off the product. The hand sanitizers showed at least a 5-log reduction in bacterial load in the in vitro test, while they showed little antibacterial activity in the in vivo and ex vivo tests, particularly those with a low alcohol content. For the hand wash products, the in vitro test was limited because of bubble formation or the high viscosity of the products and it showed low antibacterial activity of less than a 1-log reduction against E. coli. In contrast, significantly higher log reductions were observed in ex vivo and in vivo tests, consistently demonstrating these results across the two methods. Our findings revealed that the ex vivo and in vivo tests reflect the two different antibacterial mechanisms of leave-on and wash-off products. Our proposed optimized ex vivo test was more rapid and more precise than the in vitro test to evaluate antibacterial results.

Analysis of the Reduction Effect of Combined Treatment with UV-C and Organic Acid to Reduce Aspergillus ochraceus and Rhodotorula mucilaginosa Contamination (Aspergillus ochraceus와 Rhodotorula mucilaginosa 저감을 위한 자외선과 유기산 복합처리 효과 분석)

  • Eun-Seon Lee;Jong-Hui Kim;Bu-Min Kim;Mi-Hwa Oh
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.1
    • /
    • pp.54-60
    • /
    • 2024
  • This study investigated the effectiveness of using pathogens and aqueous acids to reduce the Aspergillus ochraceus and Rhodotorula mucilaginosa contamination in livestock production environments. For this study, 1 mL of each bacterial suspension (107-108 spores/mL) was inoculated on a knife surface, dried at 37℃, and used under each treatment condition. First, to investigate the effect of organic acids, acetic, lactic, and citric acids were used. Subsequently, to select the appropriate concentration, they were prepared at concentrations of 0.5, 1, 2, 3, 4, and 5%, respectively. Accordingly, to further maximize the effect of organic acid treatment, we combined the treatment with ultraviolet light. The two strains showed a significant difference (P<0.05) compared to the initial strain, with a greater than 90% decrease in the concentrations of all organic acids. Consequently, acetic and lactic acids decreased by approximately 5 and 2 log colony forming unit (CFU)/cm2, respectively, when treated with ultraviolet light (360 mJ/cm2); however, citric acid decreased by less than 1 log CFU/cm2. However, when manufactured with 4% acetic acid, a severe malodor was emitted, making it difficult for workers to use it in a production environment. Accordingly, the optimal treatment conditions for organic acid and ultraviolet light for application were selected as follows: immersion in a 4% lactic acid solution for 1 minute and then, sterilization with ultraviolet light at 360 mJ/cm2. Finally, when a pork meat sample was cut with a knife that was finally washed with lactic acid and treated with ultraviolet light, the low level of inoculum transferred from the cleaned knife to the surface of the sample was not detected. In conclusion, using this established method can prevent cross-contamination of the surface of the meat during processing.

Isolation and Identification of Competitive Fungi on Medium for Black Wood Ear Mushroom in Korea and In Vitro Selection of Potential Biocontrol Agents (목이버섯 배지 오염 곰팡이균의 분리, 동정 및 생물학적 방제제 선발)

  • Seoyeon Kim;Miju Jo;Sunmin An;Jiyoon Park;Jiwon Park;Sungkook Hong;Jiwoo Kim;Juhoon Cha;Yujin Roh;Da Som Kim;Mi jin Jeon;Won-Jae Chi;Sook-Young Park
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.66-77
    • /
    • 2024
  • Black wood ear mushroom (Auricularia auricula-judae) is one of the most economically important mushrooms in China, Japan, and Korea. The cultivation of wood ear mushrooms on artificial substrates is more efficient in terms of time and cost compared with their natural growth on trees. However, if the substrate cultivation is infected by fast-growing fungi, the relatively slow-growing ear mushroom will be outcompeted, leading to economic losses. In this study, we investigated the competitive fungal isolates from substrates infected with fast-growing fungi for the cultivation of ear mushrooms in Jangheung and Sunchon, Korea. We collected 54 isolates and identified them by sequencing their internal transcribed spacer region with morphological identification. Among the isolates, the dominant isolates were Trichoderma spp. (92.6%), Penicillium spp. (5.6%), and Talaromyces sp. (1.8%). To find an appropriate eco-friendly biocontrol agent, we used five Streptomyces spp. and Benomyl, as controls against Trichoderma spp. and Penicillium spp. Among the six Streptomyces spp., Streptomyces sp. JC203-3 effectively controlled the fungi Trichoderma spp. and Penicillium spp., which pose a significant problem for the substrates of black wood ear mushrooms. This result indicated that this Streptomyces sp. JC203-3 can be used as biocontrol agents to protect against Trichoderma and Penicillium spp.

Changes in Fermentation Characteristics and Bacterial Communities of Whole Crop Rice Silage during Ensiling Period (저장기간에 따른 사료용 벼 사일리지의 발효특성 및 미생물상 변화)

  • Mirae Oh;Hyung Soo Park;Bo Ram Choi;Jae Hoon Woo;Seung Min Jeong;Ji Hye Kim;Bae Hun Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.1
    • /
    • pp.1-5
    • /
    • 2024
  • Understanding changes in fermentation characteristics and microbial populations of forage silage during ensiling is of interest for improving the nutrient value of the feed for ruminants. This study was conducted to investigate the changes in fermentation characteristics and bacterial communities of whole crop rice (WCR) silage during the ensiling period. The chemical compositions, pH, organic acids and bacterial communities were evaluated at 0, 3, 6, and 12 months after ensiling. The bacterial communities were classified at both the genus and species levels. The dry matter content of WCR silage decreased with the length of storage (p<0.05), but there was no significant difference in crude protein and NDF contents. Following fermentation, the pH level of WCR silage was lower than the initial level. The lactic acid content remained at high levels for 3 to 6 months after ensiling, followed by a sharp decline at 12 months (p<0.05). Before fermentation, the WCR was dominated by Weissella (30.8%) and Pantoea (20.2%). Growth of Lactiplantibacillus plantarum (31.4%) was observed at 3 months after ensiling. At 6 months, there was a decrease in Lactiplantibacillus plantarum (10.2%) and an increase in Levilactobacillus brevis (12.8%), resulting in increased bacteria diversity until that period. The WCR silage was dominated by Lentilactobacillus buchneri (71.2%) and Lacticaseibacillus casei (27.0%) with a sharp reduction in diversity at 12 months. Overall, the WCR silage maintained satisfactory fermentation quality over a 12-month ensiling period. Furthermore, the fermentation characteristics of silage were found to be correlated to bacterial microbiome.