• Title/Summary/Keyword: 균형충전

Search Result 45, Processing Time 0.026 seconds

Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber (고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술)

  • Lee, Bum-Jae;Lim, Ki-Won;Ji, Sang-Chul;Jung, Kwon-Young;Kim, Tae-Jung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.232-243
    • /
    • 2009
  • The specialized and diversified synthetic and compounding technologies are used to meet the requirements for the advanced high performance tire tread materials with better balance of fuel economy(rolling resistance), safety(wet traction) and wear resistance. These techniques involve the methodology for the improvement of chemical and physical interaction between filler and the rubber matrix using coupling agents as well as a variety of chemically-modified solution SBRs. The research trends about the high performance functional SBRs and coupling agents which can interact with the surface of fillers and their working mechanism were investigated in the conventional carbon black-filled rubber and silica-filled SBR systems developed recently as "green tire".

Degree of Filling Balance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 균형 충전도)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.52-57
    • /
    • 2012
  • Aspect of filling imbalance that is originated from imbalanced share rate in runner is changed by material property, runner layout that are factors of changing viscosity and by injection pressure, injection speed, melt temperature and mold temperature that are injection conditions. In this paper, we made a study of runner system that is one of factor of filling imbalance and Sharp Conner Effect and Groove Corner Effect that are recently released. The study are showed that filling rate of between inside and outside cavity was influenced on shape of runner. Also, we suggested runner system for filling imbalance by adapting the two effects at multi cavity of unary branch type and theoretical investigated flow in the Shrap Conner runner type.

  • PDF

A New Runner System for Filling Balance in the Multi-Cavities Molds (다수 캐비티에서의 균형 충전을 위한 새로운 러너 시스템)

  • Jang, Min-Kyu;Park, Tae-Won;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.19-22
    • /
    • 2013
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalances have been observed. So, many studies for improving filling balance in the multi-cavities molds are worked up. In this study, the Melt-Buffer which is a new runner system for filling balance has been suggested, and a series of experiment about degree of filling balance in cavity-to-cavity was conducted in the mold with the Melt-Buffer. From the experiment, the filling balance was increased up to 5~6% by using the Melt-Buffer.

  • PDF

An Experimental Study for the Filling Balance of the Family Mold (Family 금형의 충전 균형을 위한 실험적 연구)

  • Park H. P.;Cha B. S.;Rhee B. O.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.47-56
    • /
    • 2006
  • It is well known that the family-mold has an advantage to reduce the cost for production and mold. However, defects are frequently occurred by over packing the smaller volume cavity during molding, especially when the family-mold has a volumetric difference between two cavities. In this study, the cavity-filling imbalance was confirmed by the temperature and the pressure sensors, and a variable-runner system was developed for balancing the cavity-filling. Experiments of balancing the cavity filling was carried out in the family-mold with the variable-runner system, and balancing the cavity-filling was confirmed by changing the cross-sectional area of a runner in the variable-runner system with the temperature and pressure sensors. The influence of the injection speed to the balancing-capability of the variable-runner system was also examined in the experiment.

Development of New Runner System for Filling Balance in Multi Cavity Injection Mold (다수 캐비티 사출금형에 적용되는 새로운 균형 충전용 러너 시스템 개발)

  • Jeong Y. D.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.42-46
    • /
    • 2006
  • For mass production, usually injection mold has multi-cavity which is filled through geometrical balanced runner system. Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed. These filling imbalances are one of the most significant factors to affect quality of plastic parts. Filling imbalances are results from non-symmetrical shear rate distribution within melt when it flows through tile runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during injection molding processing. This paper presents a solution for these filling imbalances by using Runner Core pin (RC pin). The Runner Core pin which is developed in this study creates a symmetrical shear distribution within runner. As a result of using Runner Core pin, a remarkable improvement in reducing filling imbalances was confirmed.

The Filling Balance of LDPE/ABS/PA6,6 Resin in Variable-Runner-System (가변러너시스템에서 LDPE/ABS/PA6,6 수지의 충전균형)

  • Park, H.P.;Cha, B.S.;Kang, J.K.;Rhee, B.O.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.641-647
    • /
    • 2006
  • During the injection molding process an excessive packing can occur in the smaller volume cavity because of volumetric difference of the family-mold. It causes warpage by increased residual stress in the product and flesh by over packing. In this study, we used a variable-runner system for the filling balance of the cavities by changing the cross-sectional area of a runner, and confirmed the filling imbalance by temperature and pressure sensors. We carried out experiments to examine the influence of types of resins such as LDPE/ABS/PA6,6 on the filling balancing of the system, in order to help mold designers, who can easily adopt the variable-runner system to their design. We also examined filling imbalance in the system with CAE analysis.

Development of Automatic Runner-Valve Actuator for The Filling Balance of Multi Cavity (복수 캐비리 충전 균형 조절을 위한 자동 런너 밸브 조절기 개발)

  • Lee, Y.J.;Lee, E.J.;Park, H.P.;Cha, B.S.;Rhee, B.O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.370-373
    • /
    • 2009
  • The runner-valve is an effective solution for the filling balance of the multi cavity molds. Automation of the runner-valve system is necessary for more efficient and accurate control of the filing balance. We designed an automatic runner-valve actuator for the automation and characterized the actuator by experiment. We obtained a linear relationship between motor-driving time and the height of the runner-valve. However, the motor-driving times for upward and downward directions were different due to the frictional characteristics of the actuators. Also we obtained the motor-driving times for backlashes of the 4 actuators. The results were used to formulate the relationship between the resin-arrival time and the flow rate change of the runner-valve with the theoretical equation that was derived in the previous research.

  • PDF

Active Cell Equalizer by a Forward Converter with Active Clamp (능동 클램프를 이용한 포워드 컨버터 기반 능동형 셀 밸런싱 회로)

  • Bui, Thuc minh;Jeon, Seonwoo;Bae, Sungwoo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.31-32
    • /
    • 2015
  • 본 논문은 FAC (Forward converter Active Clamp) 회로를 통해 변압기 자화인덕턴스에 저장된 에너지를 셀 밸런싱에 재사용하는 Active Clamp Forward converter 기반 셀 밸런싱 회로를 제안한다. 제안 회로는 클램프 커패시터의 충전 균형으로 스위치를 전압 스파이크로부터 보호하고 전력손실을 초래할 수 있는 변압기의 자기포화를 방지할 수 있다. 제안한 셀 밸런싱 회로는 RCD 포워드 셀 밸런싱 컨버터 보다 더 높은 전력 전달 효율과 낮은 전압 스트레스를 갖는다. 제안한 액티브 셀 밸런싱 회로는 동시에 모든 셀이 균등화 되도록 작동하므로, 셀밸런싱 시간이 짧다. 본 논문에서는 제안 회로의 배터리 상태에 따른 제어모드를 설명하고 회로의 타당성 검증을 위해 Powersim 사(社)의 Psim 시뮬레이션 연구를 수행하였다.

  • PDF

Runner Design for Filling Balance in Multi-cavity Injection Mold (다수 캐비티 사출금형에서 충전 균형을 위한 런너의 설계)

  • Kang, M.A.;Lyu, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.329-332
    • /
    • 2008
  • Flow imbalance among the cavities was often observed in multi-cavity mold. The flow imbalance affects on the dimensions and physical properties of melded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced the cavity imbalance is being developed. This comes from the temperature distribution in the cross-section of runner, which is affected by the operational conditions. In this study, experimental study of flow imbalance has been conducted for various injection speeds. This study also suggests new runner design to eliminate flow imbalance in multi-cavity injection mold. Simulation and experimental results showed suggested new designed runner could eliminate or reduce flow imbalance in multi-cavity injection mold.

  • PDF

Development of Runner System for Filling Balance in Multi Cavity Injection Mold (다수 캐비티 사출금형에서 균형 충전용 러너 시스템 개발)

  • Jeong Y. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.13-16
    • /
    • 2005
  • For mass production, usually injection mold has multi-cavity which is filled through geometrical balanced runner system. Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed. These filing imbalances are one of the most significant factors to affect quality of plastic parts when molding plastic parts in multi-cavity injection mold. Filling imbalances are results from non-symmetrical shear rate distribution within melt as it flows through the runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during injection molding processing. This paper presents a solution of these filling imbalances through using 'runner core pin'. The runner core pin which is developed in this study creates a symmetrical shear distribution within runner. As a result of using runner core pin, a remarkable improvement in reducing filling imbalance was confirmed.

  • PDF