• Title/Summary/Keyword: 균열 억제

Search Result 189, Processing Time 0.033 seconds

증기발생기 전열관의 1차측 응력부식균열 억제에 대한 Shot-Peening 효과분석

  • 박인규;김정수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.330-335
    • /
    • 1998
  • 국내 전자력 발전소 J-1호기의 증기발생기 전열관에 발생한 1차측 응력부식균열(PWSCC) 결함 데이터를 기초로하여, PWSCC 발생률 및 성장률에 대한 Shot-Peening 효과를 조사하였다. 이를 위하여, (i) Weibull 기울기, (ⅱ) 주기별 성장률 및 (ⅲ) 평균 결함길이 등을 분석하였다. Shot-Peening에 의해 PWSCC 결함 발생틀 및 성장틀은 전반적으로 감소하였으나, Shot-Peening 직후에는 급격한 증가 양상물 보인 후 다시 감소하였다. 한편 Shot-Peening의 PWSCC 절함 성장에 대한 감소 효과는 새로운 결함에 국한되며, 기존의 결함에 대해서는 영향이 거의 없는 것으로 나타났다.

  • PDF

A Study on the Crack Width of the Partially Prestressed Concrete Member with Rectangular Section (부분(部分)프리스트레스된 구형(矩形)콘크리트부재(部材)의 균열크기에 관한 연구(硏究))

  • Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.133-139
    • /
    • 1985
  • The purpese of this research is to experimentally verify the effect of prestressing on the control of cracks and on the possible increase of load capacity of the members by testing five beams with same cross section and same reinforcement ratio but with different amounts of prestressing. The test results indicate that the ultimate strength of prestressed concrete beams is only slightly higher than that of unprestressed concrete beams. It may be however need more experimental results to come to this conclusion. But it can be clearly seen that the effect of prestressing on the crack width is remarkable and that the reduction of about to 50% in crack width under service loads can be easily achieved by introducing small prestressing (about 25% of a fully prestressing).

  • PDF

Estimation of Shrinkage Behavior and Stress of Expansive Concrete on Buildings (실부재에 있어서의 팽창콘크리트의 수축거동 및 응력예측)

  • Choi, Hyeong-Gil;Kim, Gyu-Yong;Noguchi, Takafumi;Hama, Yukio
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.23-31
    • /
    • 2016
  • In this study, Based on the constructed model in advance, we suggested the macro prediction method of shrinkage cracking reduction in concrete using expansive additives, and the method was verified. In addition, extended application of model to building, the strain of walls and slabs on building was estimated by model and the generated stress was estimated thereby comparing this with the result by existing method to verify the model's applicability and the validation of our model. From examination of theoretical model for concrete using expansive additives to examination for building levels, furthermore suggests the macro prediction method for shrinkage reduction and cracking control effects was can be supply practical data in application of expansive concrete and utility in the future.

Crack Control of the Upside of Double Tee Slab and Inversed Tee Beam Joint (더블티 슬래브-역티형 보 접합부 상부의 균열억제를 위한 실험연구)

  • Nam, Sang-Uk;Song, Han-Beom;Yi, Waon-Ho;Yang, Won-Jik;Baik, Young-Soo;Tae, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.345-348
    • /
    • 2008
  • Recently, demand is caused that new building environment of value added rising demand on the lines of becoming bigger, manhattanize of structure and becoming high standard of structure in a construction site and influx of advanced foreign nation technique. To satisfy these requirements for alternative, structures applied to the PSC, PC is increasing. Double Tee Slab is possible for long length structure and applied to the method of construction. When assembling Double Tee Slab produced by the factory in the field, becamed carry-out topping concrete in upper, but occurred crack to slab line. There is no structural problem to crack occurred in upper, waterproof in maintenance and repair of structure due to a conservative cause several problems.

  • PDF

The Mechanical Properties of the Plasma Treated PP Fiber Reinforced Cement Mortar (플라즈마 처리 PP 섬유 보강 시멘트 모르타르의 역학적 특성)

  • 김영수;서문호;김형섭;류근상;원종필
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.155-156
    • /
    • 2003
  • 시멘트는 압축강도가 크고 내구성이 좋으며 가격이 저렴한 우수한 토목건축재료이다. 그러나 인장강도가 낮아서 사용 시 발생하는 휨에 의한 인장변형에 의하거나 양생 후 해 표면 크랙이 발생하는 결점이 있다. 이러한 결점을 보완하기위해 크랙의 발생 억제, 성장 지연을 목적으로 시멘트에 보강용 섬유를 투입하고 있다[1]. 시멘트에서의 보강섬유의 역할은 크랙발생에 필요한 에너지를 최대한 증가시키켜 시멘트가 경화되기 시작할 때, 구속에 의해 발생하는 인장응력 및 균열을 억제하구 내부에 형성되는 결함을 방지함에 있다[2]. (중략)

  • PDF

Study on the Crack Generation Patterns with Change in the Geometry of Notches and Charge Conditions (노치 형상 및 장약조건의 변화에 따른 균열발생양상에 관한 연구)

  • Park, Seung-Hwan;Cho, Sang-Ho;Kim, Seung-Kon;Kim, Kwang-Yeom;Kim, Dong-Gyou
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • Crack-controlled blasting method which utilizes notched charge hole has been proposed in order to achieve smooth fracture plane and minimize the excavation damage zone. In this study, the blast models, which have a notched charge hole, were analyzed using dynamic fracture process analysis software to investigate the effect of the geometry of a notched charge hole and decoupling indexes of the charge hole on crack growth control in blasting. As a result, crack extension increased and damage crack decreased with the notch length. Ultimately, stress increment factors and resultant fracture patterns with different notch length and width were analyzed in order to examine the effect factors on the crack growth controlling in rock blasts using a notched charge hole.

Preparation of Double Layered Superconductor Films for Micro-crack Removal by EPD (미세 균열 제거를 위한 2층 구조 초전도 전착 막의 제작)

  • 소대화;전용우;박정철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.315-318
    • /
    • 2004
  • 초전도후막의 제작방법으로 전기영동전착법을 균일하고 치밀한 전착후막을 얻을 수 있는 공정기술로 2층 구조 또는 다층구조의 후막제조기술과 2중 전착기술을 개발 적용하였다. 전기영동전착법을 통한 YBCO초전도 후막제작공정에서 전착 시 발생되는 균열현상과 기공의 발생을 2중 전착을 통하여 최소화 시킬 수 있었으며 Ag보호막을 통한 외부의 물리적 변화에 따른 안정성을 확보하였다. 전기영동전착후막 표면안정화 기술 개선과 확보를 통하여 초전도 후막의 전기적 특성을 향상시킬 수 있을 것으로 판단되며 초전도 후막의 특성을 향상시킬 수 있는 여러 파라메터 중 후막표면의 미세균열현상과 기공현상을 억제할 수 있는 기술로 2중 전착 및 다층구조의 공정기술을 적용하여 기존의 공정에 비하여 매우 향상된 후막을 얻을 수 있었다.

  • PDF

Contact Fracture behavior of Silicon Nitride Bilayer (질화규소 이층 층상재료의 접촉파괴거동)

  • Lee, Kee-Sung;Lee, Seung-Kun;Kim, Do-Kyung
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.293-298
    • /
    • 1998
  • The fracture behavior of $Si_3N_4N$, coated $Si_3N_4N$-BN composite was studied by the Hertzian indentation technique. New types of contact-induced cracks were found, and it was confirmed that these cracks have cone crack geometry. Contact damage was distributed in the substrate layer, which can absorb energy, as well as in the coating layer, so the propagation of initiated cracks in the coating layer were suppressed.

  • PDF

Shear Mechanism of Steel-Fiber Reinforced High Strength Concrete Beams without Sheat Confinement (전단 보강이 없는 강섬유보강 고강도 철근 콘크리트보의 전단 거동에 관한 연구)

  • 오정근;이광수;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.141-148
    • /
    • 1991
  • Investigations on the behavior of steel fiber reinforced high strength concrete beams subjected to predominant shear are accomplished to determine their diagonal shear strength including ultimate shear strength. The par¬ameters varied were the fiber volume fraction(Vf) of the steel-fibers and shear span to depth ratio(a/d). The test result show that diagonal shear strength and ultimate shear strength are increased significantly due to crack arrest mechamsm. Predictive equations are suggested for evaluating the diagonal cracking strength and ultimate shear strength of the fiber reinforced high strength concrete beams.

The Investigation of the Effects on Bent-up Bars within Beam-Column Joint Core with High-Strength Concrete (고강도 콘크리트 보-기둥접합부의 역학적 거동에 대한 연구 -구부림 철근을 중심으로-)

  • 이광수;오정근;신성우;최문식
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.2
    • /
    • pp.123-132
    • /
    • 1991
  • The purpose of this study was to Investigate the effects of bent - up bar Within beam - column 1lint core with High - Strength Concrete up to 800kg/$cm^2$. To achieve these objectives, 5 specimens were designed and tested under monotoric loading and reversed cyclic loadings. The primary variables were the number of bent-up bars, compressive strength of concrete and loading patterns. The results showed that the load capacity of specimen subjected to monotonic loading had more large than that of specirnn subjected to reversed cyclic loadings and the bent - up bar within joint core could prevented the crack at the joint face from propagating into the pint core but the failure was concentrated at the face of beam - column pint. Thus the study on flexural strength ratio should be accomplished before using bent - up bars within the joint core.