• Title/Summary/Keyword: 균열 길이

Search Result 528, Processing Time 0.028 seconds

Determination of Energy Release Rate of Penny-shaped Interface Crack on Bimaterial Cylinder (동전모양 균열이 존재하는 이상복합체의 에너지해방율 산정)

  • 양성철;서영찬;박종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.389-398
    • /
    • 2002
  • The mixed mode problem (I and II) of a peny-shaped interface cracks in remote tension loading on a bi-material cylinder is studied using finite element method. The energy release rates for the tip of the crack in the interface were calibrated for several different moduli combinations and crack ratios using the modified crack closure integral technique and J-integral method, with numerical results obtained from a commercial finite element program. Numerical results show that non-dimensional value of$\sqrt{G_{II}E^*}/\sqrt[p]{\pi a}$ increases as the crack size or moduli ratio increases. Meanwhile, non-dimensional value of$\sqrt{G_{I}E^*}/\sqrt[p]{\pi a}$ decreases as the moduli ratio increases, but above the moduli ratio of 3 its value decreases then increases again as the crack size increases. Reliability of the numerical analysis in this study was acquired with comparison to an analytical solution for the peny-shaped interface crack in an infinite medium.

Evaluation of Indentation Fracture Toughens in Brittle Materials Based on FEA Solutions (유한요소해에 기초한 취성재료의 압입파괴인성평가)

  • Hyun, Hong Chul;Lee, Jin Heang;Felix, Rickhey;Lee, Hyungyil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1503-1512
    • /
    • 2013
  • In this study, we proposed an indentation evaluation method for fracture toughness using cohesive finite element simulations. First, we examined the effect of material properties (yield strain, Poisson's ratio, and elastic modulus) on crack size during Vickers indentation and then generated a regression formula that explains the relations among fracture toughness, indentation load, and crack size. We also proposed another indentation formula for fracture toughness evaluation using the contact size a and E/H (H: hardness). Finally, we examined the relation between the crack size and the indenter shapes. Based on this, we can generate from the formula obtained using the Vickers indenter a formula for an indenter of different shapes. Using the proposed method, fracture toughness is directly estimated from indentation data.

Fatigue Damage Evaluation of Cr-Mo Steel with In-Situ Ultrasonic Surface Wave Assessment (초음파 시험에 의한 배관용 Cr-Mo강의 피로손상의 비파괴평가)

  • Kim, Sang-Tae;Lee, Hei-Dong;Yang, Hyun-Tae;Choi, Young-Geun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • Although the ultrasonic method has been developed and used widely in the fields, it has been used only for measuring the defect size and thickness loss. In this study, the relationship between surface wave attenuation through micro-crack growth and variation of velocity under repeated cyclic loading has been investigated. The specimens are adopted from 2.25Cr-1Mo steel, which is used for power plant and pipeline system, and have dimensions of $200{\times}40{\times}4mm$. The results of ultrasonic test with a 5MHz transducer show that surface wave velocity gradually decreases from the point of 60% of fatigue life and the crack length of 2mm with the increasing fatigue cycles. From the results of this study, it is found that the technique using the ultrasonic velocity change is one of very useful methods to evaluate the fatigue life nondestructively.

  • PDF

An Experimental Study on the Stress Behavior of Coped Stringers in Steel Railway Bridge - II : Repair · Strengthening Method (철도교 세로보 절취부에서의 응력거동에 관한 실험적 연구 - II : 보수·보강 방법)

  • Li, Guang Ri;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.307-313
    • /
    • 2009
  • In this study, in order to research the repair-strengthening methods, when fatigue crack occurs in the coped stringers of a steel railway bridge, we manufacture the full size of crossbeam-stringer and floor system model. Also the experimental test is performed on the coped stringers applying the repair-strengthening methods using the stop hole, combination plate, connection plate, bracket, and so on. The results indicate that, the most effective method is to set up connection plate and bracket in the top flange and bottom flange of the stringers, while we can consider the method of punching stop holes in the end of the crack as a subsidiary method. It is necessary to set up the combination plate when the length of crack is quite long.

Study on Radionuclide Migration Modelling for a Single Fracture in Geologic Medium : Characteristics of Hydrodynamic Dispersion Diffusion Model and Channeling Dispersion Diffusion Model (단일균열 핵종이동모델에 관한 연구 -수리분산확산모델과 국부통로확산모델의 특성-)

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.401-410
    • /
    • 1994
  • Validation study of two radionuclide migration models for single fracture developed in geologic medium the hydrodynamic dispersion diffusion model(HDDM) and the channeling dispersion diffusion model(CDDM), was studied by migration experiment of tracers through an artificial granite fracture on the labolatory scale. The tracers used were Uranine and Sodium lignosulfonate know as nonsorbing material. The flow rate ranged 0.4 to 1.5 cc/min. Related parameters for the models were estimated by optimization technique. Theoretical breakthrough curves with experimental data were compared. In the experiment, it was deduced that the surface sorption for both tracers did not play an important role while the diffusion of Uranine into the rock matrix turned out to be an important mass transfer mechanism. The parameter characterizing the rock matrix diffusion of each model agreed well The simulated result showed that the amount of flow rate could not tell the CDDM from the HDDM quantitatively. On the other hand, the variation of fracture length gave influence on the two models in a different degree. The dispersivity of breakthrough curve of the CDDM was more amplified than that of the CDDM when the fracture length was increased. A good agreement between the models and experimental data gave a confirmation that both models were very useful in predicting the migration system through a single fracture.

  • PDF

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length (혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동)

  • 정의효
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Crack Length (혼합모드(I+II)하에서 균열길이 변화에 따른 피로균열 전파 거동)

  • Jeong, Eui-Hyo;Hur, Bang-Soo;Kwon, Yun-Ki;Oh, Taek-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.182-187
    • /
    • 2000
  • The application of fracture mechanics have traditionally concentrated on cracks leaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at prediction of fatigue crack growth behaviour under mixed mode(I+II) in two dimensional branched type precrack. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis(FEA) was carried out. The theoretical predictions were compared with experimental results in this paper

  • PDF

Material Nonlinear Analysis of RC Beams Based on Moment-Curvature Relations (모멘트-곡률 관계에 기초한 철근콘크리트 보의 재료비선형 해석)

  • 곽효경;김지은
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.295-307
    • /
    • 1998
  • 철근콘크리트 보에 대해서 인장강화효과의 소성힌지길이를 고려한 재료비선형 해석을 수행하였다. 비선형 해석에서 자유도가 많은 대형구조물에 적용시키기에는 많은 제약이 따르는 복잡한 층상해석기법을 사용하는 대신 단면해석을 통해 미리 구성된 모멘트-곡률 관계를 이용하였으며, 유한요소해석에서 사용요소의 크기에 따른 수치해석상의 오차를 줄이기 위해 인장강화효과와 소성힌지길이 개념을 도입하였다. 마지막으로 제안된 해석 알고리즘의 타당성을 검증하기 위하여 해석결과와 실험결과간의 상호 관계를 비교, 분석하였다.

  • PDF

Analysis of a Branched Crack in a Semi-Infinite Plate Under Tension and Bending Moment (인장과 굽힘을 받는 반무한 평판내의 분기균열 해석)

  • 김유환;범현규;박치용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.433-440
    • /
    • 2002
  • A branched crack in a semi-infinite plate under uniform tension and bending moment is considered in this study By using the superposition, the stress and moment intensity factors for the branched crack subjected to uniform tension and bending moment we evaluated. The stress intensity factors we obtained by using the finite element method and the J-based mutual integral. The moment intensity factors are calculated by extrapolating the values of the moment new the crack tip. Numerical results lot the normalized stress and moment Intensity factors we shown as functions of the ratio of branched crack length to main crack length and the branching angle.

Comparative Study on the Flexural Performance of Concrete Reinforced with Polypropylene and Steel Fibers (폴리프로필렌 및 강섬유 보강콘크리트의 휨 성능에 관한 비교 연구)

  • Cho, Baiksoon;Lee, Jong-Han;Back, Sung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1677-1685
    • /
    • 2014
  • Short discrete fibers compounded with concrete can enhance the tensile resistance and ductility of concrete. Recently, the effectiveness of the reinforcement has increased according to the increasing length of steel fiber. However, the lengthening of steel fiber requires reducing the ratio of the fiber content to remain the workability and quality of concrete. Thus, the present study evaluated the flexural performance of fiber reinforced concrete with less than l.0% fiber volume ratios of steel fiber, 30mm and 60mm long, and polypropylene fiber, being evaluated as a good reinforcing material with chemical stability, long-term durability, and cost effectiveness. Concrete with more than 0.25% steel and 0.5% polypropylene fibers improved the brittle failure of concrete after reaching cracking strength. Concrete reinforced with polypropylene exhibited deflection-softening behavior, but that with more than 0.5% polypropylene delayed stress reduction and recovered flexural strength by 60 to 80% after cracking strength. In conclusion, concrete reinforced with more than 0.75% polypropylene could improve structural flexural performance. In particular, energy absorption capacity of reinforced concrete with 1.0% polypropylene fiber was similar to that with 0.5% and 0.7% steel fibers.