• Title/Summary/Keyword: 균열성장파괴

Search Result 207, Processing Time 0.022 seconds

A Study on the Application of Pre-Indentation Technique for Fastener Hole Model (FASTENER HOLE 모델의 대한 예비압입 적용 연구)

  • Hwang,Jeong-Seon;Jo,Hwan-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.26-31
    • /
    • 2003
  • Aging aircraft accumulates widespread fatigue damage commonly referred to as multiple site damage(MSO). For ductile material such as 2024-T3 aluminum, MSO may lower the service life below that which is predicted by conventional fracture mechanics. The present paper is concerned with the fatigue life extension by pre-indentation technique for thin 2024-T3 aluminum plate to decelerate the crack propagation rate in the panels with MSO. The panel with fastener holes can be simply modelled by Hole/Slot type Middle-Tension specimen. Results of fatigue testing show significantly improving failure cycles from 10 to 40 times. This retardation effect is decreased by increasing the loading level in the constant amplitude loading. In the sense of retardation mechanism, the crack propagation rate is gradually attenuated by entering the indentation mark and maintains at the lowest value for a long period after the edge of crack passes the center of indentation area.

A Study on the Unstable Crack Growth of Concrete (콘크리트의 불안정 균열성장에 관한 연구)

  • Ko, Young Zoo;Bae, Ju Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.29-36
    • /
    • 1991
  • This experimental research evaluated the length of crack extension with the measured compliances as the mutual comparison factors instead of the method proposed in ASTM E561-80. And this research measured the R-curves with the application to the concept of the strain energy release rate that was formulated from the inelastic energy absorbed during the crack growth. With the interpretation of R-curves, this research obtained the starting point of the unstable crack growth, and compared the values of critical fracture toughness with each other, and then examined the effects of variations of the maximum size of coarse aggregate and the thickness of specimen on the values of the critical fracture toughness.

  • PDF

Correlation Between Transient Regime and Steady-State Regime on Creep Crack Growth Behavior of Grade 91 Steel (Grade 91 강의 크리프 균열성장 거동에 대한 천이영역과 정상상태영역의 상관 관계)

  • Park, Jae-Young;Kim, Woo-Gon;Ekaputra, I.M.W.;Kim, Seon-Jin;Kim, Eung-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1257-1263
    • /
    • 2015
  • A correlation between the transient regime and steady state regime on the creep crack growth (CCG) for Grade 91 steel, which is used as the structural material for the Gen-IV reactor systems, was investigated. A series of CCG tests were performed using 1/2" CT specimens under a constant applied load and at a constant temperature of $600^{\circ}C$. The CCG rates for the transient and steady state regimes were obtained in terms of $C^*$ parameter. The transient CCG rate had a close correlation with the steady-state CCG rate, as the slope of the transient CCG data was very similar to that of the steady state data. The transient rate was slower by 5.6 times as compared to the steady state rate. It can be inferred that the steady state CCG rate, which is required for long-time tests, can be predicted from the transient CCG rate obtained from short-time tests.

複合材料의 破壞에 對한 破壞力學的 어프로우치 (II) -피로시험 및 구열 성장 거동 해석-

  • 최용식
    • Journal of the KSME
    • /
    • v.22 no.3
    • /
    • pp.203-213
    • /
    • 1982
  • 이재결합재의 피로시험에서 나타나는 피로균열성정거동은, 역시 균열선단이 결합경계의 근방에 있거나 경계상에 있을 때의 것이 균질재료에서의, 거동과 비교.검토되어야겠다. 이재결합재를 여기에서는 탄성계수 E 값이 동일(또는 근접)한 이재간의 결합재와, E 값이 현저히 다른 이재 간의 결합재로 나누어 그 피로시험예를 검토해 나가기로 하겠다. 또한 전술한 바와 같이 이재 결합재에 의한 피로시험 그 자체의 난전으로 말미암아 파괴역학적으로 해석된 이재결합재피로 균열거동연구보고가 극히 부진함에 비추어 여기에서는 주로 필자가 발효한 연구보고들을 바탕 으로 해서 검토해 나가기로 하겠다.

  • PDF

A Study on Fatigue Crack Propagation of Random Short Fiber SMC Composite (非規則性 短纖維强化 SMC複合材料의 疲勞龜裂 進展에 관한 硏究)

  • 김광수;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.87-95
    • /
    • 1989
  • The fatigue crack propagation of random short fiber SMC composite material was investigated. In macroscopic viewpoint, SMC composite material was treated as isotropic material and was analyzed in terms of conventional fracture mechanics. Experiments were conducted on mode I and mixed respectively and various loading level was applied to each mode. Fatigue crack growth can be explained in three steps and most of fatigue life is consumed in initial crack growth. In this experiments, power law, i.e, da/dN=C(C.DELTA.K)$^{m}$ , between fatigue crack growth rate and stress intensity factor range, was valid and the value of the exponent m is about 10, which is much higher than that of other metals. Fracture mechanism was also investigated by SEM fractographic study.

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(II) - Numerical Simulation of Crack Arrest Behavior (보강판의 균열거동해석과 Crack Arrest 설계(II) - Crack Arrest 거동의 시뮬레이션)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.50-56
    • /
    • 2005
  • To demonstrate the feasibility of utilizing FCAD chart proposed in our previous work, series of crack growth/arrest behavior in the integrally stiffened panels were simulated by numerical method using upper mentioned FCAD charts and a new crack growth rate equation. It is concluded that proposed family of FCAD curves, in the form of non-dimensional arrest load ranges, are reliable indicators of fatigue crack growth/arrest behavior of integrally stiffened panels considered here.

  • PDF

Fracture Analysis Based on the Critical-CTOA Criterion (임계 CTOA조건을 이용한 파괴해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2223-2233
    • /
    • 1993
  • An engineering method is suggested to calculate the applied load versus crack extension in the elastic-plastic fracture. The condition for an increment of crack extension is set by a critical increment of crack-up opening displacement(CTOD). The ratio of the CTOD increment to the incremental crack extention is a critical crack-tip opening angle(CTOA), assumed to be constant for a material of a given thickness. The Dugdale model of crack-tip deformation in an infinite plate is applied to the method, and a complete solution for crack extension and crack instability is obtained. For finite-size specimens of arbitrary geometry in general yielding, an approximate generalization of the Dugdale model is suggested so that the approximation approaches the small-scale yielding solution in a low applied load and the finite-element solution in a large applied load. Maximum load is calculated so that an applied load attains either a limit load on an unbroken ligament or a peak load during crack extension. The proposed method was applied to three-point bend specimens of a carbon steel SM45C in various sizes. Reasonable agreements are found between calculated maximum loads and experimental failure loads. Therefore, the method can be a viable alternative to the J-R curve approach in the elastic-plastic fracture analysis.

Time-dependent Reduction of Sliding Cohesion due to Rock Bridges along Discontinuities (암석 브리지에 의한 불연속면 점착강도의 시간의존성에 관한 연구)

  • 박철환;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • This paper is to introduce an article published in Rock Mechanics and Rock Engineering, 2003. In this research, a fracture mechanics model is developed to illustrate the importance of time-dependence far brittle fractured rock. In particular a model is developed fer the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.

Analysis for Defect Evaluation of Pipes in Nuclear Power Plant (원전 배관의 결함 평가를 위한 해석)

  • Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3121-3126
    • /
    • 2013
  • The integrity evaluation of pipes in nuclear power plant are essential for the safety of reactor vessel, and integrity must be assured when flaws are found. Accurate stress intensity analyses and crack growth rate data of surface-cracked components are needed for reliable prediction of their fatigue life and fracture strengths. Fatigue design and life assessment are the essential technologies to design the structures such as pipe, industrial plant equipment and so on. The effect of crack spacing on stress intensity factor K values was studied using three-dimensional finite element method (FEM). For the case of cylinder under internal pressure, a significant increase in K values observed at the deepest point of the surface crack. Also, this paper describes the fatigue analysis for cracked structures submitted to bending loads.

A Pattern Recognition Method of Fatigue Crack Growth on Metal using Acoustic Emission (음향방출을 이용한 금속의 피로 균열성장 패턴인식 기법)

  • Lee, Soo-Ill;Lee, Jong-Seok;Min, Hwang-Ki;Park, Cheol-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.125-137
    • /
    • 2009
  • Acoustic emission-based techniques are being used for the nondestructive inspection of mechanical systems used in service. For reliable fault monitoring related to the crack growth, it is important to identify the dynamical characteristics as well as transient crack-related signals. Widely used methods which are based on physical phenomena of the three damage stages for detecting the crack growth have a problem that crack-related acoustic emission activities overlap in time, therefore it is insufficient to estimate the exact crack growth time. The proposed pattern recognition method uses the dynamical characteristics of acoustic emission as inputs for minimizing false alarms and miss alarms and performs the temporal clustering to estimate the crack growth time accurately. Experimental results show that the proposed method is effective for practical use because of its robustness to changes of acoustic emission caused by changes of pressure levels.