• 제목/요약/키워드: 균열선단변위

검색결과 75건 처리시간 0.024초

축방향 변위가 작용하는 가스 파이프라인 용접부에 존재하는 원주방향 외부표면균열의 변형률 기반 J-적분 및 CTOD 계산 (Estimations of Strain-Based J-integral and CTOD for Circumferential Outer Surface Crack in the Weld of Gas Pipeline Under Axial Displacement)

  • 김경민;박지수;문지희;장윤영;박승현;허남수
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.100-109
    • /
    • 2020
  • Pipelines subjected to ground movement would be easily exposed to large-scale deformation. Since such deformations may cause the pipeline failure, it is important to ensure the safety of pipelines in various operation conditions. However, crack in weld metal have been considered as one of the main causes that can deteriorate the structural integrity of the pipeline. For this reason, the structural integrity of the pipe containing the crack in the weld should be obtained. In order to assess cracked pipe, J-integral and crack-tip opening displacement(CTOD) have been applied widely as the elastic-plastic fracture mechanics parameters representing crack driving force. In this study, engineering solutions to calculate the J-integral and CTOD of pipes with a circumferential outer surface crack in the weld are proposed. For this purpose, 3-dimensional elastic-plastic finite element(FE) analyses have been performed considering the effect of overmatch and width of weld. The shape of the weld was simplified to I-groove, and axial displacement was employed as for loading condition. Based on FE results, the effects of crack size, material properties and width of weldment on J-integral and CTOD were investigated. Additionally, the J-integral and CTOD for I-groove were compared with those for V-groove to examine the effects of the weld shape, and a proportionality coefficient of J-integral and CTOD was calculated from the results of this paper.

균열선단 부근의 측면함몰로부터 응력삼축성의 결정 방법 (Methods to Evaluate Stress Triaxiality from the Side Necking Near the Crack Tip)

  • 김동학;강기주
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.1021-1028
    • /
    • 2004
  • Kim et al. suggested an experimental method to determine the Q parameter in situ from the out-of-plane displacement and the in-plane strains on the surface of side necking near the crack tip. In this paper, the procedure to evaluate the stress triaxiality near a crack tip such as the Q parameter is to be polished in the details for simplicity and accuracy. That is, Q and hydrostatic stress are determined only from the out-of-plane displacement, but not using in-plane strain, which is hard to measure. And also, the plastic modulus is determined by an alternative way. Through three-dimensional finite element analyses for a standard CT specimen with 20% side-grooves, the validities of the new procedures are examined in comparison to the old ones. The effect of location where the displacements are measured to determine the stress triaxiality is explored.

FCAW 용접부의 인성에 미치는 Root Gap의 영향 (Effect of root gaps on toughness of FCAW weld metal)

  • 한종만;이은배;안성철;한용섭
    • Journal of Welding and Joining
    • /
    • 제9권4호
    • /
    • pp.40-49
    • /
    • 1991
  • Both impact and fracture toughnesses were investigated with root gaps in FCAW weld metals at room temperature and 0.deg.C. The maximum impact value was obtained at the root gap of 16mm for 1G position weld metal, and the impact value of 3G position weld metals also showed the maximum impact value at the root gap of 12mm. However, the fracture toughnes(CTOD)values tend to decrease with increasing root gaps at both temperatures in 1G weld metal. Bending test also showed satisfactory results with all of root gaps investigated. Based on this result, it becomes possible to apply wide root gaps in real projects in both aspects of toughness and bending resistance.

  • PDF

구속효과를 구려한 가스배관 결함의 2차원적 파괴거동 해석에 관한 연구 (A Study on the Fracture Behavior of a Two Dimensional Crack in Gas Pipelines Considering Constraint Effects)

  • 심도준;장영균;최재붕;김영진;김철만
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.61-69
    • /
    • 2001
  • EFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it is assumed that the J-integral uniquely characterizes the crack-tip stress-strain field. However, it has been proven that the J-integral alone can not be sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to investigate the fracture behavior of a crack in gas pipeline(KS D 3507) by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature(24$\^{C}$) and low temperature(-40$\^{C}$) to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects. For precise assessment of cracks, especially shallow cracks, in KS D 3507 pipeline, constraint effect must be considered.

무요소법을 이용한 균열진전 문제의 형상 최적설계 (Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods)

  • 김재현;하승현;조선호
    • 한국전산구조공학회논문집
    • /
    • 제27권5호
    • /
    • pp.337-343
    • /
    • 2014
  • 본 논문에서는 재생 커널 기법을 사용하여 혼합모드 균열진전 문제에 대한 연속체 기반의 형상 설계민감도 해석을 수행하였다. 재생 커널 기법은 기존의 유한요소법과 달리 요소망을 재구성할 필요가 없어, 커널 함수의 연속성을 증가시켰을 때 높은 정밀도의 형상함수를 얻을 수 있다는 장점을 가지고 있다. 균열선단 주변에서 J-적분을 수행하기 위해 선형탄성 조건이 고려되었다. 변위장과 응력 확대 계수의 설계변수에 대한 감도해석을 위하여 물질도함수를 도입하였으며 직접 미분법보다 효율적인 애조인 방법을 사용하여 설계민감도를 유도하였다. 수치 예제들을 통해서 재생 커널 기법을 이용한 균열진전 해석결과의 타당성을 확인하였으며 애조인 방법을 이용한 형상 설계민감도 해석 결과를 유한차분법과 비교하여 매우 정확하고 효율적인 결과를 얻을 수 있음을 알 수 있었다. 이를 바탕으로 간단한 모델에 대하여 형상 최적설계를 수행하여 균열이 발생될 수 있는 구조물에 대해서 균열에 의한 피해를 최소화할 수 있도록 균열을 제어할 수 있는 최적의 형상을 도출하였다.

유한요소 변위값을 이용한 인장하중 판재 균열선단 주위의 응력분포 해석 (Stress Distribution in the Vicinity of a Crack Tip in a Plate under Tensile Load Using Displacement Data of Finite Element Method)

  • 백태현
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.84-91
    • /
    • 2008
  • Due to the complexity of the engineering problems, it is difficult to obtain directly the stress field around the crack tip by theoretical derivation. In the paper, the hybrid method is employed to calculate full-field stress around the crack tip in uni-axially leaded finite width tensile plate, using the displacement data of given points calculated by finite element method as input data. The method uses complex variable formulations involving conformal mappings and analytical continuity. In order to accurately compare calculated fringes with experimental ones, both actual and reconstructed photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Reconstructed fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within a few percent compared with ones obtained by empirical equation and finite element analysis.

균열선단 응력삼축성의 측정방법;여러 형상 시험편에의 적용성 검토 (Experimental Method to Evaluate Stress Triaxiality near the Crack Tip;Applicability to Various Specimen Configurations)

  • 김동학;김도형;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.60-65
    • /
    • 2004
  • Kim et al. described and compared other methods of measuring stress triaxiality using the displacements near the side necking, proved the validities of these models and explored the effect of location where the displacements are measured using three-dimensional finite element analysis for a standard CT specimen with 20% side-grooves. In this paper, the applicability of these models to various specimen and materials are examined in detail. To consider the effects of side groove, thickness of specimen, crack length, specimen geometry and strain hardening exponents, three-dimensional finite element simulation has been performed for various specimen geometries. For a case without a side groove, in the whole the difference between the stress triaxilaity analytically evaluated and directly determined is similar. For a case with a 20% side groove the stress triaxiality is measured at the area where ${\theta}$ is smaller than $60^{\circ}$, which excludes a side grooved area.

  • PDF

연강 시험편에 대한 동적 균열 전파 해석 (Dynamic Crack Propagation Analysis for Mild Steel Specimen)

  • 조재웅
    • 한국산학기술학회논문지
    • /
    • 제7권2호
    • /
    • pp.97-100
    • /
    • 2006
  • 연강에서의 동적인 크랙 전파는 충격 하중을 받는 3점 굽힘 시험편들에 의해서 연구되어진다. 시험편은 10mm의 두께를 가진 $320{\times}75\;mm$의 크기를 가지고 있다. 하나의 정적인 실험과 30.2 m/s 및 45.2 m/s의 충격 속도들을 가진 두 개의 동적 실험들이 행하여진다. 고속 카메라는 크랙 성장과 크랙 선단 개구 변위들의 데이터를 얻는데 사용되어진다. 두 개의 반쪽 시험편들의 상대 회전을 직접 측정하기 위해서 Moire의 간섭 패턴을 사용한다. 실험들에서는 크랙 전파에 대한 하중 속도의 영향이 없거나 약간의 영향이 있는 것으로 나타나고 있다.

  • PDF

동적모드 I 상태에서 직교 이방성체의 이방성비가 등속전파 균열선단의 응력성분과 변위성분에 미치는 영향 (Influence of Anisotropic Property Ratio of Orthotropic Material on Stress Components and Displacement Components at Crack tip Propagating with Constant Velocity Under Dynamic Mode I)

  • 이광호;황재석;최선호
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.87-98
    • /
    • 1995
  • When the crack in orthotropic material is propagating under dynamic model I load, influences of anisotropic property ratio $E_{L}$/ $E_{T}$ on stress and displacement around propagating crack tip are studied in this paper. When M<0.55 and .alpha.=90.deg.(.alpha.; the angle of fiber direction with crack propagating direction, M; crack propagation velocity/shear stress wave velocity), the influence of $E_{L}$/ $E_{T}$ on stress .sigma.$_{x}$, .sigma.$_{y}$, .tau.$_{xy}$ and .sigma.$_{\theta}$ is the greast on .sigma.$_{y}$. Except M<0.55 and .alpha.=90.deg., it is the greast on .sigma.$_{x}$ in any situation. Increasing $E_{L}$/ $E_{T}$, stress components are increased or decreased. When maximum stress is based, the stress .sigma.$_{x}$(.alpha.=90.deg.), .sigma.$_{y}$(.alpha.=0.deg.) and .tau.$_{xy}$ (.alpha.=90.deg.) are decreased with increment of $E_{L}$/ $E_{T}$ in M=0. any stresses except .sigma.$_{*}$x/(.alpha.=0.deg.) are decreased with increment of $E_{L}$/ $E_{T}$ in M=0.9. When .alpha.=90.deg., the influence of $E_{L}$/ $E_{T}$ on displacement U and V is V>U in any velocities of crack propagation, when .alpha.=0.deg., it is VU in M>0.75 and when $E_{L}$/ $E_{T}$ is increased, U and V are decreased in any conditions.sed in any conditions.tions.tions.tions.

50kg급 고장력강 레이저용접부의 용접잔류응력 및 파괴인성 특성 (The Characteristic of Residual Stress and Fracture Toughness on The Welded Joint of HT50 by Laser Welding)

  • 노찬승;방한서;고민성;김성주;김하식
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.93-96
    • /
    • 2003
  • Laser beam welding process is a relatively new process in comparison with arc welding process, but it is expected to apply widely because of the many advantages, and research and development of that process is being progressed actively for the practical use. the application of this welding process has been restricted due to the high initial investment and the need of precise processing against the material, but cost reduction and thick plate welding in high speed have become practial by recent technological development, and this welding process to not only small parts in automobile, machinery and physicochemical field, but also a large structure and pipe line are being applied. In order to utilize this welding process appropriately to a steel structure, the properties of welding residual stresses and fracture toughness in welded joints are to be investigated for relibilty. On this study, after performing the finite element analysis, thermal and residual stress properties have been examined to the general structural steel (HT50) by laser beam welding. Besides, the property of fracture toughness has been investigated by the Charpy impact test and 3-points bending CTOD test carried out in the range of temperature between $-60^{\circ}C$ and $20^{\circ}C$. From the research results it is revealed that the maximum residual stress appears in the center of plate thickness and the fracture toughness is influenced by strength mis-match.

  • PDF