• Title/Summary/Keyword: 균열발생수명

Search Result 207, Processing Time 0.029 seconds

증기발생기 전열관에서의 숏 피닝에 의한 잔류응력분포 모델 및 균열 해석

  • 신규인;박재학;김홍덕;정한섭
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.1-6
    • /
    • 2000
  • 가압 경수로의 증기발생기는 원자로(reactor vessel)와 가압기(pressurizer)에서 가열ㆍ가압된 1차 계통의 고온, 고압수가 터빈을 돌리는 2차 계통수와 열교환을 일으켜 고온ㆍ고압의 증기를 발생시키는 것으로, 전열관의 파손이 발생될 경우 1차 계통에서 2차 계통으로 방사능 물질이 누출되어 심각한 문제가 야기된다. 따라서 증기발생기의 전열관 손상이나 파손 문제는 원자력 발전소의 수명과 밀접한 관계가 있다. (중략)

  • PDF

Prediction of Cover Concrete Cracking due to Chloride Induced Corrosion in Concrete Structures (콘크리트 구조물의 염해부식에 따른 덮개콘크리트의 균열예측)

  • Lim, Dong-Woo;Lee, Chang-Hong;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.291-292
    • /
    • 2009
  • In this study, an analysis of cover concrete cracking exposed to the chloride attack was performed based on newly defined durability limit states. Using the methodology in this paper, the prediction of cover concrete cracking and subsequent spalling can be used for the prediction of corrosion induced serviceability degradation of concrete structures subjected chloride attack.

  • PDF

A Service Life Prediction for Unsound Concrete Under Carbonation Through Probability of Durable Failure (탄산화에 노출된 콘크리트 취약부의 확률론적 내구수명 평가)

  • Kwon, Seung Jun;Park, Sang Soon;Nam, Sang Hyeok;Lho, Byeong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.49-58
    • /
    • 2008
  • Generally, steel corrosion occurs in concrete structures due to carbonation in down-town area and underground site and it propagates to degradation of structural performance. In general diagnosis and inspection, only carbonation depth in sound concrete is evaluated but unsound concrete such as joint and cracked area may occur easily in a concrete member due to construction process. In this study, field survey of carbonation for RC columns in down-town area is performed and carbonation depth in joint and cracked concrete including sound area is measured. Probability of durable failure with time is calculated through probability variables such as concrete cover depth and carbonation depth which are obtained from field survey. In addition, service life of the structures is predicted based on the intended probability of durable failure in domestic concrete specification. It is evaluated that in a RC column, various service life is predicted due to local condition and it is rapidly decreased with insufficient cover depth and growth of crack width. It is also evaluated that obtaining cover depth and quality of concrete is very important because the probability of durable failure is closely related with C.O.V. of cover depth.

Structural Safety Assessment of Independent Spherical LNG Tank(2nd report) - Fatigue Crack Propagation Analysis Based on the LBF Theory - (독립구형 LNG 탱크의 구조안전성 평가(제2보) - LBF 이론에 의한 피로균열 진전해석 -)

  • In-Sik Nho;Yong-Yun Nam;Ho-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.74-82
    • /
    • 1993
  • The present paper deals with the structural safety assessment techniques for independent type B spherical LNG tank against fatique crack initiation and propagation, which contains fellowing 3 steps. 1) Prediction of long term distribution of wave induced stresses and fatique crack intiation life using cumulative damage theory which were described at the 1st report. 2) Surface crack propagation analysis to verify that initial defects cannot penetrate tank plate. 3) Passing-through fatigue crack propagation analysis was performed based on LBF(Leak Before Failure ) theory.

  • PDF

Experimental Study on Fatigue Strength of Continuously Reinforced Concrete Pavements with Initial Transverse Cracks (초기균열간격에 따른 연속철근콘크리트 포장의 피로강도에 대한 실험적 연구)

  • Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1173-1178
    • /
    • 2007
  • A laboratory investigation is conducted to characterize and quantity fatigue life of continuously reinforced concrete pavement with initial cracks. Four specimens scaled were made based on results of finite-element analyses and stress-strain curve comparisons. Static tests were firstly performed to obtain magnitudes of static failure loads and to predict crack patterns before fatigue tests. The fatigue lives measured in the study were compared based on the initial crack spacing. The comparison indicates that the fatigue lives of most specimens increases with increasing the initial crack spacing. The results obtained in the study can be used for maintenance and retrofit of the continuously reinforced concrete pavements.

  • PDF

A Study on the VHCF Fatigue Behaviors of Hydrogen Attacked Inconel 718 Alloy (수소취화된 인코넬 718의 VHCF(Very High Cycle Fatigue) 피로특성에 관한 연구)

  • Suh, Chang-Min;Nahm, Seung-Hoon;Kim, Jun-Hyong;Pyun, Young-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.637-646
    • /
    • 2016
  • This study is to investigate the influence of hydrogen attack and UNSM on fatigue behaviors of the Inconel 718 alloy. The decrease of the fatigue life between the untreated and the hydrogen attacked material is 10-20%. The fatigue lives of hydrogen attacked specimen decreased without a fatigue limit, similar to those of nonferrous materials. Due to hydrogen embrittlement, about 80% of the surface cracks were smaller than the average grain size of $13{\mu}m$. Many small surface cracks caused by the embrittling effect of hydrogen attack were initiated at the grain boundaries and surface scratches. Cracks were irregularly distributed, grew, and then coalesced through tearing, leading to a reduction of fatigue life. Results revealed that the fatigue lives of UNSM-treated specimens were longer than those of the untreated specimens.

Reheat Cracking Susceptibility of CrMoV Steel (CrMoV강의 재열균열 민감도에 관한 연구)

  • 김광수
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.168-170
    • /
    • 2004
  • 터빈로터는 발전설비 중에서 가장 핵심 부분이며 동시에 심한 고온 응력을 받는 부분이다. 터빈로터 재료로는 Ni-Cr-Mo-V강과 CrMoV 강등이 사용된다. CrMoV 강은 발전 설비로 장시간 사용 중 열적피로나 크립손상, 고온 부식 등의 문제가 단독 혹은 복합적으로 발생하여 재료에 손상을 입히게 되고 결국에는 설비의 수명을 단축 시키곤 한다. (중략)

  • PDF

A Case Study for the Estimation of Remaining Lives of Asphalt Pavements (아스팔트포장 잔존수명 예측 사례 연구)

  • Lee, Jung-Hun;Lee, Hyun-Jong;Park, Hee-Mun;Kim, In-Tai
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • This study presents a case study of condition evaluation of various asphalt pavement sections to estimate performance lives. The pavement surface conditions including cracking and rutting are first evaluated using a automatic pavement analyzer, ARAN. HPCI(Highway Pavement Condition Index) values are estimated using the pavement surface distress data. It is observed from the pavement distress survey that the major distress type of the sections is top-down cracking. The modulus value of each pavement layer is back-calculated from the defection data obtained from a FWD(Falling Weight Deflectometer) and compared with the laboratory measured dynamic modulus values. Remaining lives of the various pavement sections are estimated based on a mechanistic-empirical approach and AAHTO 1993 design guide. The structural capacities of the all pavement sections based on the two approaches are strong enough to maintain the pavement sections for the rest of design life. Since the major distress type is top-down cracking, the remaining lives of the pavement sections are estimated based on HPCI and existing performance database of highway pavements. To evaluate the causes of premature pavement distress, various material properties, such as air void, asphalt binder content, aggregate gradation, dynamic modulus and fatigue resistance, are measured from the field cores. It is impossible to accurately estimate the binder contents of field samples using the ignition method. It is concluded from the laboratory tests that the premature top down cracking is mainly due to insufficient compaction and inadequate aggregate gradation.

  • PDF

Case Study on the Firing Pin Fatigue Destruction of the Korean Rifle by Repeated Impact (반복충격에 의한 한국형 소총의 공이 피로파괴 사례 연구)

  • Lee, Ho-Jun;Choi, Si-Young;Shin, Tae-Sung;Seo, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.648-655
    • /
    • 2020
  • The firing pin of modern automatic rifles detonates the primer of loaded ammunition via a hammer. During this process, the firing pin receives an impact load and repetitive force throughout the life of the rifle. An endurance test of a rifle showed that the firing pin breaks prematurely at 96.26% of life. Accordingly, a case study was conducted through cause analysis and a reconstruction test. Optical microscopy and scanning electron microscopy of the broken surface of the firing pin showed that a crack began in the circumferential direction of the surface, resulting in a fatigue crack to the core after repeated impact. Crack growth and fatigue destruction occurred at the end due to the repetitive impact and was estimated using a notch. For verification, a sample that produced a 0.03mm circumferential notch was broken at 64.25% of life in the reconstruction test. A test of breakage according to the notch types showed that a 0.3mm and a 0.5mm one-side notch were broken at 66.53% and 50.76%, respectively, and a 0.03mm six-point notch was broken at 85.65%. The endurance life of a sample firing pin with a rough surface and tool mark was examined, but an approximately 381 ㎛ internal crack formed. Through this study, failure for each notch type was considered. These results show that quality control of the notch and surface roughness is essential for ensuring the reliability of a component subjected to repeated impact.

Crack Analysis using Constrained Delaunay Triangulation Crack Mesh Generation Method (Constrained Delaunay Triangulation 균열 요소 생성 기법을 이용한 균열 해석)

  • Yeounhee Kim;Yeonhi Kim;Jungsun Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.17-26
    • /
    • 2024
  • Aircraft engines are exposed to high temperatures, high pressures, and stress caused by the rotation of the turbine shaft during flight. These loads can result in microcracks both on the inside and outside surfaces of the structure. Consequently, this can lead to structural defects and negatively impact the lifespan of the parts. To proactively prevent these defects, a finite element analysis is carried out to identify cracks. However, this process is time-consuming and requires significant effort due to the repetitive nature of crack modeling. This study aims to develop a crack modeling method based on the finite element model. To achieve this, the Constrained Delaunay Triangulation (CDT) technique is employed to triangulate the space while considering limitations on point connections. The effectiveness of this method is validated by comparing stress intensity factors for semi-elliptical cracks in plates and cylindrical vessels. This approach proves to be a valuable tool for crack analysis studies.