• Title/Summary/Keyword: 균열개구응력

Search Result 48, Processing Time 0.028 seconds

A Study on the Microscopic Model for Fatigue Crack Closure Behavior (피로균열 개폐구거동의 미시적 모델에 관한 연구)

  • O, Se-Uk;Gang, Sang-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.81-87
    • /
    • 1990
  • Fatigue crack closure levels based on the behavior of residual displacements on crack surfaces, are determined analytically according to the microscopic crack closure mechanisms, i.e., whether the first contact of crack surfaces takes place at the very crack tip or on the surfaces near the tip. The comparative analysis on the two models is carried out empirically by the constant amplitude fatigue tests on 2024-T3 aluminum alloy plate, and it shows that under negative stress ratio, the case of the first contact at crack tip gives better agreement with the experimental results than the other.

  • PDF

A Study on the Microscopic Model for Fatigue Crack Closure Behavior (피로균열 개폐구거동의 미시적 모델에 관한 연구)

  • O, Se-Uk;Gang, Sang-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.87-87
    • /
    • 1990
  • Fatigue crack closure levels based on the behavior of residual displacements on crack surfaces, are determined analytically according to the microscopic crack closure mechanisms, i.e., whether the first contact of crack surfaces takes place at the very crack tip or on the surfaces near the tip. The comparative analysis on the two models is carried out empirically by the constant amplitude fatigue tests on 2024-T3 aluminum alloy plate, and it shows that under negative stress ratio, the case of the first contact at crack tip gives better agreement with the experimental results than the other.

Evaluation of Fatigue Crack Growth Rate on the Surface of Steel Members Using COD(Crack Opening Displacement) Measurement (COD(Crack Opening Displacement) 측정에 의한 강재표면의 피로균열진전속도 평가)

  • Kim, Kwang Jin;Kim, In Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Steel structures have been allowed to have fatigue damage tolerance in fact. If it would be assessed whether fatigue crack is growing or not and How fast fatigue crack is propagating, we should make a rational decision on methods and a period of reinforcement in the maintenance. In this study, fatigue crack growth tests on two kinds of through-thickness cracked steel plates and a out-of-plane gusset welded joint were conducted to evaluate fatigue crack growth rate using the COD(Crack Opening Displacement), and COD measurement using strain gauges was examined to offer a practical method. As a result, we proposed a reasonable assessing method for fatigue crack growth rate using the COD and it was experimentally proved practical to estimate the COD through measuring strains.

Modeling of Material Properties of Fiber-Reinforced High Strength Concrete (섬유 보강 고강도 콘크리트의 재료 특성 모델링)

  • Yang, In-Hwan;Park, Ji-Hun;Choe, Jeong-Seon;Joh, Changbin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, material properties of steel fiber reinforced high strength concrete (FRHSC) with the compressive strength of about 120MPa were modeled. Steel fiber content of 1.0%, 1.5%, and 2.0% was considered as experimental variable. First of all, compressive strength tests were carried out to determine compressive characteristics of concrete, and compressive stress-strain curves were modeled. For conventional concrete with moderate compressive strength, the stress-strain curves are in the form of parabolic curves, but in the case of high strength concrete reinforced with steel fiber, the curves increase linearly in the form of the straight line. In addition, to understand the tensile properties of FRHSC, the crack mouth opening displacement (CMOD) test was performed, and the tensile stress-CMOD curve was calculated through inverse analysis. When the steel fiber content increased from 1.0% to 1.5%, there was a significant difference of tensile strength. However, when the amount of steel fiber was increased from 1.5% to 2.0%, there was no significant difference of tensile strength, which might result from the poor dispersion and arrangement of steel fiber in concrete.

Response Analysis and crack Pattern Evaluation of Two Story Masonry Structure under the seismic Load (2층 조적조의 지진하중에 의한 거동해석 및 균열평가)

  • 김희철;이경훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.179-190
    • /
    • 1998
  • All brick masonry buildings are constructed without any structural limitation under earthquake load, in Korea. However, it is necessary to evaluate response for seismic loads since the number of earthquake occurances in Korea is increasing. In this paper, the load resisting capacities of brick masonry buildings are investigated by finite element analysis method and the response due to seismic load are analyzed by applying 0.12g earthquake load. It was observed that the two story masonry building is not safe under the 0.12g earthquake load, especially at the first floor. The cracks were occurred under the bond beam and around the openings due to the stress concentration.

  • PDF

The Observation of Fatigue Striations for Aluminum Alloy by Atomic Force Microscope(AFM) (원자력 현미경(AFM)에 의한 알루미늄 합금의 피로 스트라이에이션 관찰)

  • Choe, Seong-Jong;Gwon, Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.955-962
    • /
    • 2000
  • Scanning Probe Microscope (SPM) such as Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AFM) was shown to be the powerful tool for nano-scale characterization of a fracture surface . AFM was used to study cross sectional profiles and dimensions of fatigue striations in 2017-T351 aluminum alloy. Their widths (SW) and heights (SH) were measured from the cross sectional profiles of three-dimension AFM images. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Coincidence of the crack growth rate with the striation width was found down to the growth rate of 10-5 mm/cycle. (2) The relation of SH=0.085(SW)1.2 was obtained. (3) The ratio of the striation height to its width SH/SW did not depend on the stress intensity factor range K and the stress ratio R. (4) Not only the SW but also the SH changed linearly with the crack tip opening displacement (CTOD) when plotted in log-log scale. From these results, the applicability of the AFM to nano-fractography is discussed.

Application of Enhanced Reference Stress Method to Nuclear Piping LBB Analysis under Combined Tension and Bending (복합하중이 작용하는 원자력 배관의 파단전누설 해석을 위한 개선된 참조응력법의 수치해석적 검증)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.67-73
    • /
    • 2001
  • Three dimensional, elastic-plastic finite element(FE) analyses for circumferential through-wall cracked pipes under combined tension and bending are performed using actual tensile data of stainless steel, for two purposes. The first one is to validate the recently-proposed enhanced reference stress (ERS) method to estimate the J-integral and COD for circumferential through-wall cracked pipes under combined tension and bending. The second one is to compare those results with the GE/EPRI estimations. The FE results of the J-integral and the COD, resulting from six cases of proportional and non-proportional combined tension and bending, compare very well with those estimated from the proposed method. Excellent agreements of the proposed method with the detailed FE results provide sufficient confidence in the use of the proposed method to the Leak-Before-Break(LBB) analysis of through-wall cracked pipes under combined tension and bending.

  • PDF

Fracture toughnesses of thin sheet materials by using CT specimens (CT 시편을 이용한 박판재료의 파괴인성 특성)

  • Lee, Eok-Seop;Lee, Yun-Pyo;Gang, In-Mo;Kim, Seon-Yong;Kim, Seung-Gwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2090-2095
    • /
    • 1997
  • The plane stress fracture toughness for thin aluminum alloy(2024-T3 and 7075-T6) specimens are characterized by using compact-tension (CT) specimens. Anti-buckling plates were fabricated on both sides of the thin CT specimens to prevent the buckling phenomena which caused by the 45.deg. C plastic yielding at the crack tip under the plane stress condition. The plane stress fracture toughnesses determined by three different procedures are compared with each others. The plane stress fracture toughnesses are also compared with a few published values which were determined by using center-cracked panel specimens.

A study on the fatigue crack growth of mild steel weldments using flux cored wire $CO_2$ welding (국산 Flux-Cored Wire를 이용한 반자동용접이음새에서의 피로파괴 특성)

  • 엄동석
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.42-50
    • /
    • 1989
  • The application of fracture mechanics is being increased gradually to assess the safety of welded structures containing crack. Fatigue crack propagation behavior and elastic-plastic fracture toughness J$_{IC}$ of home made flux cored wire(1.22mm) CO$_{2}$ weldments was discussed. Especially fatigue crack propagation test was carried out by .DELTA.K control instead of load control and elastic-plastic fracture toughness J$_{IC}$ was obtained by ASTM-R curve method on C.T.specimen in transverse direction of weldments. The results obtained are as follows; (1) Weld metal presented an almost complete similarity to base metal on fatigue crack propagation rate in transverse direction. (2) Weld metal was more than base metal on J$_{IC}$ value in transverse direction. (3) F.C.W. CO$_{2}$ weldments had an excellent characteristic of fatigue crack propagation rate and J$_{IC}$ in less than 50kg/mm$^{2}$ steel grade, this would result from that weld metal had good static strength.trength.

  • PDF

An Experimental Study on Tensile Properties of Steel Fiber-Reinforced Ultra High Strength Concrete (강섬유 보강 초고강도 콘크리트의 인장 특성 실험 연구)

  • Yang, In-Hwan;Park, Ji-Hun;Lee, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.279-286
    • /
    • 2019
  • In this study, an experimental study on the tensile properties of steel fiber-reinforced ultra high strength concrete(UHSC) with a standard compressive strength of 180MPa was performed. Steel fibers with a volume ratio of 1% were mixed to prepare direct tensile strength specimens and prism specimens for the three-point bending test. The fabricated specimens were set up in the middle section of the specimen to induce cracks, and the test was carried out according to each evaluation method. First, the stress-strain curves were analyzed by performing direct tensile strength tests to investigate the behavior characteristics of concrete after cracking. In addition, the load-CMOD curve was obtained through the three-point bending test, and the inverse analysis was performed to evaluate the stress-strain curve. Tensile behavior characteristics of the direct tensile test and the three-point bending test of the indirect test were similar. In addition, the tensile stress-strain curve modeling presented in the SC structural design guidelines was performed, and the comparative analysis of the measured and predicted values was performed. When the material reduction factor of 1.0 was applied, the predicted value was similar to the measured value up to the strain of 0.02, but when the material reduction factor of 0.8 was applied, the predicted value was close to the lower limit of the measured value. In addition, when the strain was greater than 0.02, the predicted value by SC structural design guideline to underestimated the measured value.