• Title/Summary/Keyword: 규칙 탐사

Search Result 193, Processing Time 0.023 seconds

Association Rule Discovery for Sequence Analysis (서열 분석을 위한 연관 규칙 탐사)

  • 김정자;이도헌
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.91-93
    • /
    • 2001
  • 최근 지놈(Genome) 프로젝트를 통해 핵산, 단백질 서열 정보가 밝혀짐에 따라 분자 수준의 유전자 정보를 다루는 기법들이 활발히 연구되면서 방대한 서열 정보를 데이터 베이스화하고, 부족하기 위한 효과적인 도구와 컴퓨터 알고리즘의 개발을 필요로 하고 있다. 본 논문에서는 여러 단백질에 공통적으로 존재하는 서열 정보간에 존재하는 연관성을 탐사하기 위한 서열 연관 규칙 알고리즘을 제안한다. 원자 항목을 취급하였던 기존 알고리즘과는 달리 중복을 반영해야 하는 서열 데이터의 특성을 고려하여야 한다. 실험을 단백질 서열 데이터를 대상으로 수행하였다. 먼저 여러 서열에 빈발하게 발생하는 부 서열 집합을 찾고, 부 서열 집합들간에 존재하는 관련성을 탐사한다. 본 연구의 결과는 탐사된 규칙으로부터 다른 단백질의 구조와 기능을 예측할 수 있고, 이 정보는 필요로 하는 생물학적 분석을 방향을 제시할 것이다. 이는 생물학적 실험 대상의 후부조합을 최소화함으로써 많은 시간과 노력 비용을 절감할 수 있다.

  • PDF

An Active Candidate Set Management Model for Realtime Association Rule Discovery (실시간 연관규칙 탐사를 위한 능동적 후보항목 관리 모델)

  • Sin, Ye-Ho;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.2
    • /
    • pp.215-226
    • /
    • 2002
  • Considering the rapid process of media's breakthrough and diverse patterns of consumptions's analysis, a uniform analysis might be much rooms to be desired for interpretation of new phenomena. In special, the products happening intensive sails on around an anniversary or fresh food have the restricted marketing hours. Moreover, traditional association rule discovery algorithms might not be appropriate for analysis of sales pattern given in a specific time because existing approaches require iterative scan operation to find association rule in large scale transaction databases. in this paper, we propose an incremental candidate set management model based on twin-hashing technique to find association rule in special sales pattern using database trigger and stored procedure. We also prove performance of the proposed model through implementation and experiment.

Design and Implementation of Spatial Association Rule Discovery System for Spatial Data Analysis (공간 데이터 분석을 위한 공간 연관 규칙 탐사 시스템의 설계 및 구현)

  • Ahn, Chan-Min;Lee, Yun-Seok;Park, Sang-Ho;Lee, Ju-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.27-34
    • /
    • 2006
  • Recently, the study about the technology which effectively manage spatial information is actively conducted. For the effective knowledge inquiry, various extended data mining methods are applied in spatial data mining. However, former spatial association rule system appears the problem that does not reflect various non-spatial property along the inquiries because it searches the rule from the calculation among predicates. To resolve the problem, present study suggests the system that extends the inquiries using in spatial database, searches the association rule among non-spatial object property after setting the data based on space information. Especially, the model which is applicable to geographical information system is embodied. Embodied system with this method enables to search more useful spatial association rule in real life since it shows high migration property with extended spatial database and considers spatial property and various non-spatial property.

  • PDF

A Method for Frequent Itemsets Mining from Data Stream (데이터 스트림 환경에서 효율적인 빈발 항목 집합 탐사 기법)

  • Seo, Bok-Il;Kim, Jae-In;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.139-146
    • /
    • 2012
  • Data Mining is widely used to discover knowledge in many fields. Although there are many methods to discover association rule, most of them are based on frequency-based approaches. Therefore it is not appropriate for stream environment. Because the stream environment has a property that event data are generated continuously. it is expensive to store all data. In this paper, we propose a new method to discover association rules based on stream environment. Our new method is using a variable window for extracting data items. Variable windows have variable size according to the gap of same target event. Our method extracts data using COBJ(Count object) calculation method. FPMDSTN(Frequent pattern Mining over Data Stream using Terminal Node) discovers association rules from the extracted data items. Through experiment, our method is more efficient to apply stream environment than conventional methods.

A Study for Keyword Extraction Method (키워드 추출 기법에 관한 연구)

  • Shin, Seong-Yoon;Jeong, Kyong-Taek;Rhee, Yang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.463-466
    • /
    • 2009
  • 본 논문에서는 대량의 문제를 자동으로 분류하기 위하여 비감독 학습 기법에 의해 카테고리별 키워드를 구성하기 위한 방법을 제안하였다. 제안된 방법에서는 사전에 문제를 분류하지 않고 키워드를 추출하기 위하여 데이터마이닝 기법 중의 하나인 연관 규칙 탐사 알고리즘을 이용하였다. 먼저, 각 카테고리를 대표하는 핵심 키워드를 선정하고, 연관 규칙 탐사 알고리즘을 적용하여 각 핵심 키워드와 관련된 용어 집합을 추출한다.

  • PDF

A Mining Method for Exploration of Causality on Data Stream System (데이터 스트림 시스템에서 인과관계 탐사를 위한 마이닝 방법)

  • Han, Dae-Young;Kim, Dae-In;Hwang, Bu-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.306-309
    • /
    • 2009
  • 일반적으로 이벤트는 발생 시점이라는 시간 속성을 갖는다. 그리고 고객 단위로 이벤트를 축적한 데이터베이스가 있다면 데이터 마이닝을 통하여 유용한 정보를 탐사할 수 있다. 특히 이벤트 발생의 원인과 결과에 대한 관계 규칙을 찾아낼 수 있다면 과거의 정보를 바탕으로 미래를 예측할 수 있는 예측 판단 정보로 사용할 수 있다. 본 연구에서는 데이터 스트림 시스템에서 시간 관계 규칙을 탐사하고 시간 관계 규칙을 구성하는 이벤트 간의 영향력을 측정하기 위한 SM-EC(data Stream Mining for Exploration of Causality)기법을 제안한다. 실험을 통하여 SM-EC가 제공하는 영향력 정보는 다양한 비상 상황에 대처하는 중요한 척도가 될 수 있음을 확인하였다.

Deriving Local Association Rules by User Segmentation (사용자 구분에 의한 지역적 연관규칙의 유도)

  • 박세일;이수원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.250-252
    • /
    • 2001
  • 연관규칙 탐사기법은 트랜잭션을 대상으로 항목간, 또는 속성간의 연관관계를 발견하는 방법으로, 데이터 집합의 구조를 쉽게 통찰할수 있다는 장점으로 인하여 활발히 연구되어져 왔다. 그러나 현재까지의 연구들은 전체 사용자중 공통적인 특성을 지닌 사용자 그룹이 존재할 경우, 그러한 그룹별 연관규칙을 찾아낼 수 없다는 한계점을 지닌다. 본 논문에서는 이러한 점을 해결하기 위하여, 속성선택 및 사용자 구분 기법을 이용하여 사용자를 부분집합으로 구분하고, 그 부분집합별로 연관규칙을 발견한다. 또한 위와 같이 얻어진 연관규칙이 전체 사용자를 대상으로 한 연관규칙보다 해당 부분집합에 더욱 적합하다는 사실을 여러 연관규칙 평가치를 이용하여 평가한다.

  • PDF

Finding Association Rules based on the Significant Rare Relation of Events with Time Attribute (시간 속성을 갖는 이벤트의 의미있는 희소 관계에 기반한 연관 규칙 탐사)

  • Han, Dae-Young;Kim, Dae-In;Kim, Jae-In;Song, Myung-Jin;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.691-700
    • /
    • 2009
  • An event means a flow which has a time attribute such as the a symptom of patients, an interval event has the time period between the start-time-point and the end-time-point. Although there are many studies for temporal data mining, they do not deal with discovering knowledge from interval event such as patient histories and purchase histories. In this paper, we suggest a method of temporal data mining that finds association rules of event causal relationships and predicts an occurrence of effect event based on discovered rules. Our method can predict the occurrence of an event by summarizing an interval event using the time attribute of an event and finding the causal relationship of event. As a result of simulation, this method can discover better knowledge than others by considering a lot of supports of an event and finding the significant rare relation on interval events which means an essential cause of an event, regardless of an occurrence support of an event in comparison with conventional data mining techniques.

Approximation of Frequent Itemsets with Maximum Size by One-scan for Association Rule Mining Application (연관 규칙 탐사 응용을 위한 한 번 읽기에 의한 최대 크기 빈발항목 추정기법)

  • Han, Gab-Soo
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.475-484
    • /
    • 2008
  • Nowadays, lots of data mining applications based on continuous and online real time are increasing by the rapid growth of the data processing technique. In order to do association rule mining in that application, we have to use new techniques to find the frequent itemsets. Most of the existing techniques to find the frequent itemsets should scan the total database repeatedly. But in the application based on the continuous and online real time, it is impossible to scan the total database repeatedly. We have to find the frequent itemsets with only one scan of the data interval for that kind of application. So in this paper we propose an approximation technique which finds the maximum size of the frequent itemsets and items included in the maximum size of the frequent itemsets for the processing of association rule mining.

Efficient Storage Structures for a Stock Investment Recommendation System (주식 투자 추천 시스템을 위한 효율적인 저장 구조)

  • Ha, You-Min;Kim, Sang-Wook;Park, Sang-Hyun;Lim, Seung-Hwan
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.169-176
    • /
    • 2009
  • Rule discovery is an operation that discovers patterns frequently occurring in a given database. Rule discovery makes it possible to find useful rules from a stock database, thereby recommending buying or selling times to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that recommends stock investments. First, we propose five storage structures for efficient recommending of stock investments. Next, we discuss their characteristics, advantages, and disadvantages. Then, we verify their performances by extensive experiments with real-life stock data. The results show that the histogram-based structure improves the query performance of the previous one up to about 170 times.