• Title/Summary/Keyword: 규칙 탐사

Search Result 193, Processing Time 0.022 seconds

데이터마이닝에서 수량연관규칙 탐사방법

  • Park, Won-Hwan
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.91-96
    • /
    • 2003
  • 연관규칙은 데이터베이스에 잠재되어 있는 유용한 정보를 탐사하는 방법으로 데이터마이닝의 한 분야이다. 이는 항목의 발생유무만을 고려하는 이진연관규칙에 대한 연구가 주였으나, 최근에는 항목의 수량까지 고려하는 수량연관규칙 탐사가 소개되고 있다. 수량연관규칙은 수량속성 항목을 임의의 방법으로 여러 개의 소구간 항목으로 분할한 후, 각각을 이진항목으로 취급하여 연관규칙을 탐사하는 방법이다. 본 논문에서는 분할된 여러 소구간 분할항목들 중에서 필요 소구간 항목만을 선택적으로 탐사하는 방법을 제안한다. 제안방법은 블린항목제약식을 사용하여 수량항목의 탐사범위를 제한함으로써 모든 분할을 탐사하지 않고 필요 소구간만을 탐사하기 때문에 탐사시간을 단축할 수 있다.

  • PDF

Discovery of Multiple-Level Association Rules using Relative Support of Data (데이터의 상대 지지도를 이용한 다단계 연관 규칙 탐사 기법)

  • 하단심;황부현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.195-197
    • /
    • 2000
  • 데이더는 다양한 빈도 형태와 속성을 가지고 있으며 데이터의 연관 규칙 탐사 시 이러한 데이터의 빈도수를 고려할 수 있는 방법이 필요하다. 그러나 기존의 연관 규칙 탐사 알고리즘은 지지도와 신뢰도만을 가지고 데이터의 연관성을 발견하며 데이터들의 발생 빈도는 고려하지 않는다. 본 논문에서는 하위 단계의 데이터나 동일한 단계지만 상대적으로 발생 빈도가 적은 데이터들의 연관 규칙을 탐사할 수 있는 방법을 제안한다. 제안하는 방법은 데이터의 상대 지지도를 이용한 다단계 연관 규칙 탐사 기법을 수행함으로써 데이터의 발생 빈도를 고려한 연관 규칙을 탐사할 수 있다. 그리고 탐사된 연관 규칙은 마케팅 분야 등의 여러 응용에서 유용하게 이용될 수 있다.

  • PDF

An Association Rules Mining System based-on SQL (SQL을 이용한 연관 규칙 탐사 시스템)

  • 전수정;김영지;우용태
    • Proceedings of the Korea Database Society Conference
    • /
    • 2000.11a
    • /
    • pp.89-94
    • /
    • 2000
  • 본 논문에서는 연관 규칙 탐사 시스템을 설계하고 구현하였다. 본 시스템은 관계형 데이터베이스의 표준 질의어를 이용하여 사용자가 제시한 질의 조건을 만족하는 항목집합에 대해 다양한 형태의 연관규칙을 탐사하기 위한 시스템이다. 질의처리 모듈에서는 사용자가 제시한 조건을 만족하는 질의를 동적으로 구성하여, 연관 규칙 탐사를 위해 사용되는 대상 트랜잭션 데이타베이스의 범위를 조절할 수 있다. 연관 규칙을 발견하기 위한 후보 항목집합을 생성하기 위해 연관 규칙 탐사 알고리즘을 사용하였다. 연관 규칙 알고리즘에서는 한 트랜잭션 데이타에 대해 생성될 수 있는 후보 항목집합을 배열을 이용하여 처리하는 효율적인 방법을 제안하였다.

  • PDF

Design of a Temporal Association Rule Mining System in Temporal Databases (시간지원 데에터베이스에서의 시간 연관규칙 탐사 시스템의 설계)

  • 이강태;정동원;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.229-231
    • /
    • 1998
  • 시간지원 데이터베이스내에는 다양한 유형의 시간 정보가 내포되어 있다. 이 논문은 다양한 시간 정보를 기반으로 하는 시간 연관규칙 탐사에 관한연구이다. 기존의 연관규칙 탐사에 관한 연구는 현실세계에 존재하는 사건을 탐사 대상으로 하면서도 시간 개념을 지니지 않은 형태의 데이터 집합을 대상으로 하고 있다. 그리고 단순히 단일 시점의 트랜잭션 시간마을 고려하여 순차패턴을 추출해내는 연구가 진행되었다. 이러한 연구는 시간 데이터의 시간 간격 특성과 시간 위상 특성을 간과하게 된다. 또한 시간 종속적인 데이터에 관한 정보의 탐사 시에는 한계점을 지니게 된다. 따라서 이 논문에서는 시간 간격과 시간 위상을 지니는 시간지원 데이터베이스로부터 추출될 수 있는 시간 정보 유형을 제시하고 이에 기반한 다양한 유형의 연관규칙을 제시한다. 또한 시간 연관규칙을 정의하고 이를 탐사하는 과정을 설명하며 궁극적으로 시간지원 데이터베이스에서의 시간 연관규칙 탐사 시스템을 소개한다.

Multi-Dimensional Association Rule Mining in Survey Data (설문 데이터를 위한 다차원 연관 규칙 마이닝)

  • 이정수;김교정
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.395-399
    • /
    • 2003
  • 본 논문에서는 인문 사회과학 분야의 방대한 설문 데이터를 처리하기 위해 기존의 설문 항목들간의 평면적 관계에만 국한 되었던 연구에 대해 설문데이터 다차원 연관규칙 마이닝 시스템을 설계하고 데이터 간의 연관규칙을 탐사한다. 즉, 직관적으로 분류될 수 있는 기준에 따라 클러스터링을 실행하여 데이터를 분류한 후 각 클러스터로부터 다차원 연관 규칙을 탐사하는 시스템을 제안함으로써 보다 강력한 연관규칙을 탐사한다.

  • PDF

Rule Discovery and Matching for Forecasting Stock Prices (주가 예측을 위한 규칙 탐사 및 매칭)

  • Ha, You-Min;Kim, Sang-Wook;Won, Jung-Im;Park, Sang-Hyun;Yoon, Jee-Hee
    • Journal of KIISE:Databases
    • /
    • v.34 no.3
    • /
    • pp.179-192
    • /
    • 2007
  • This paper addresses an approach that recommends investment types for stock investors by discovering useful rules from past changing patterns of stock prices in databases. First, we define a new rule model for recommending stock investment types. For a frequent pattern of stock prices, if its subsequent stock prices are matched to a condition of an investor, the model recommends a corresponding investment type for this stock. The frequent pattern is regarded as a rule head, and the subsequent part a rule body. We observed that the conditions on rule bodies are quite different depending on dispositions of investors while rule heads are independent of characteristics of investors in most cases. With this observation, we propose a new method that discovers and stores only the rule heads rather than the whole rules in a rule discovery process. This allows investors to define various conditions on rule bodies flexibly, and also improves the performance of a rule discovery process by reducing the number of rules. For efficient discovery and matching of rules, we propose methods for discovering frequent patterns, constructing a frequent pattern base, and indexing them. We also suggest a method that finds the rules matched to a query issued by an investor from a frequent pattern base, and a method that recommends an investment type using the rules. Finally, we verify the superiority of our approach via various experiments using real-life stock data.

Item Hierarchy based Frequent Itemset Ordering Method (항목 계층 구조에 기반한 빈발 항목 집합 나열 방법)

  • Kim, jun woo;Kang, hyun kyung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.301-302
    • /
    • 2013
  • 연관 규칙 탐사는 이산적인 항목들을 포함하는 트랜잭션 데이터에 존재하는 항목 간 동시 발생 관계를 찾아내는 데 그 목적을 두고 있다. 연관 규칙은 {전항}${\rightarrow}${후항}의 형태를 갖고, 전, 후항은 모두 사전에 정의된 지지도 하한을 만족하는 빈발 항목 집합으로 구성된다. 연관 규칙 탐사에서 문제가 되는 것은 일반적으로 탐사되는 빈발 항목 집합의 개수가 많아지면서 규칙의 개수도 많아지고, 이들 사이에 중복성이 존재한다는 점이다. 따라서 단순히 지지도나 신뢰도 순으로 빈발 항목 집합이나 규칙을 나열하기보다는 항목들의 연관성을 고려하는 것이 분석자에게 보다 도움이 될 수 있다. 본 논문에서는 이를 위하여 연관 규칙 탐사와 함께 계층 군집 분석을 실시하여 항목들 간 연관성을 정리하고, 이를 토대로 빈발 항목 집합들을 나열하는 방법을 제안하고자 한다.

  • PDF

Mining Association Rules on Significant Rare Data using Relative Support (상대 지지도를 이용한 의미 있는 희소 항목에 대한 연관 규칙 탐사 기법)

  • Ha, Dan-Shim;Hwang, Bu-Hyun
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.577-586
    • /
    • 2001
  • Recently data mining, which is analyzing the stored data and discovering potential knowledge and information in large database is a key research topic in database research data In this paper, we study methods of discovering association rules which are one of data mining techniques. And we propose a technique of discovering association rules using the relative support to consider significant rare data which have the high relative support among some data. And we compare and evaluate existing methods and the proposed method of discovering association rules for discovering significant rare data.

  • PDF

Efficient Algorithms for Mining Association Rules Under the Interactive Environments (대화형 환경에서 효율적인 연관 규칙 알고리즘)

  • Lee, Jae-Moon
    • The KIPS Transactions:PartD
    • /
    • v.8D no.4
    • /
    • pp.339-346
    • /
    • 2001
  • A problem for mining association rules under the interactive environments is to mine repeatedly association rules with the different minimum support. This problem includes all subproblems except on the facts that mine repeatedly association rules with the s믇 database. This paper proposed the efficient algorithms to improve the performance by using the information of the candidate large itemsets which calculate the previous association rules. The proposed algorithms were compared with the conventional algorithm with respect to the execution time. The comparisons show that the proposed algorithms achieve 10∼30% more gain than the conventional algorithm.

  • PDF

Mining Association Rules in Multidimensional Stream Data (다차원 스트림 데이터의 연관 규칙 탐사 기법)

  • Kim, Dae-In;Park, Joon;Kim, Hong-Ki;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.765-774
    • /
    • 2006
  • An association rule discovery, a technique to analyze the stored data in databases to discover potential information, has been a popular topic in stream data system. Most of the previous researches are concerned to single stream data. However, this approach may ignore in mining to multidimensional stream data. In this paper, we study the techniques discovering the association rules to multidimensional stream data. And we propose a AR-MS method reflecting the characteristics of stream data since make the summarization information by one data scan and discovering the association rules for significant rare data that appear infrequently in the database but are highly associated with specific event. Also, AR-MS method can discover the maximal frequent item of multidimensional stream data by using the summarization information. Through analysis and experiments, we show that AR-MS method is superior to other previous methods.