• Title/Summary/Keyword: 규칙 찾기

Search Result 82, Processing Time 0.02 seconds

Generating Technology of the Association Rule for Analysis of Audit Data on Intrusion Detection (침입탐지 감사자료 분석을 위한 연관규칙 생성 기술)

  • Soh, Jin;Lee, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.1011-1014
    • /
    • 2002
  • 최근 대규모 네트워크 데이터에 대한 패턴을 분석하기 위한 연구에 대하여 관심을 가지고 침입탐지 시스템을 개선하기 위해 노력하고 있다. 특히, 이러한 광범위한 네트워크 데이터 중에서 침입을 목적으로 하는 데이터에 대한 탐지 능력을 개선하기 위해 먼저, 광범위한 침입항목들에 대한 탐지 적용기술을 학습하고, 그 다음에 데이터 마이닝 기법을 이용하여 침입패턴 인식능력 및 새로운 패턴을 빠르게 인지하는 적용기술을 제안하고자 한다. 침입 패턴인식을 위해 각 네트워크에 돌아다니는 관련된 패킷 정보와 호스트 세션에 기록되어진 자료를 필터링하고, 각종 로그 화일을 추출하는 프로그램들을 활용하여 침입과 일반적인 행동들을 분류하여 규칙들을 생성하였으며, 생성된 새로운 규칙과 학습된 자료를 바탕으로 침입탐지 모델을 제안하였다. 마이닝 기법으로는 학습된 항목들에 대한 연관 규칙을 찾기 위한 연역적 알고리즘을 이용하여 규칙을 생성한 사례를 보고한다. 또한, 추출 분석된 자료는 리눅스 기반의 환경 하에서 다양하게 모아진 네트워크 로그파일들을 분석하여 제안한 방법에 따라 적용한 산출물이다.

  • PDF

An Efficient Terminology Clustering Method Using Datamining Technique (데이타마이닝 기법을 이용한 효율적인 전문 용어 클러스터링)

  • 이정화;남상엽;문현정;우용태
    • Proceedings of the Korea Database Society Conference
    • /
    • 2000.11a
    • /
    • pp.210-215
    • /
    • 2000
  • 최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 일반적인 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 대량의 문서로부터 유용한 지식 정보를 찾기 위하여 의미적으로 연관된 전문 용어들끼리 클러스터링 하기 위한 방법을 제안하였다. 학술 논문을 대상으로 전문 용어를 추출하여 관련된 용어들끼리 클러스터를 구성하는 실험을 통하여 제안된 방법의 효율성을 보였다.

  • PDF

A Design and Implementation of Integrated Database Schema Checker (통합 데이터베이스 스키마 검사기의 설계와 구현)

  • 김규백;유경용;김형찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.205-207
    • /
    • 2004
  • 프로젝트의 경쟁력과 성공을 위해 통합 데이터베이스 관리가 중요해지고 있다. 본 논문에서는 통합 데이터베이스 관리가 스키마 설계에서부터 이루어지도록 지원하는 새로운 스키마 검사기의 설계와 구현 내용을 소개한다. 개발된 스키마 검사기는 데이터베이스 객체의 명명 규칙 검사, 적합한 단어 필터, 유사 객체 찾기. 사용자 지정 규칙 적용의 기능을 가지고 있다. 그리고 일반적인 컴파일러의 구문 분석 과정과 다른 방법을 적용해 작업 효율을 높인 구현 세부 사항에 대해서도 상세히 설명한다. 개발된 도구는 통합 데이터베이스 관리 업무에 중요하게 현재 활용되고 있다.

  • PDF

Ontology - Based Intelligent Rule Components Extraction (온톨로지 기반 지능형 규칙 구성요소 추출에 관한 연구)

  • Kim U-Ju;Chae Sang-Yong;Park Sang-Eon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.237-244
    • /
    • 2006
  • 시맨틱 웹 관련연구가 증가함에 따라 하나의 관련분야로 규칙기반 시스템 동의 지능적인 웹 환경에 대한 기대 역시 커지고 있다. 하지만 규칙기반 시스템을 활용하기에는 아직도 규칙습득이 많은 제약이 되고 있다. 규칙습득은 웹으로부터 필요한 규칙을 습득하는 일련의 방법인데, 이러한 규칙을 습득하기 위해서는 규칙구성요소를 먼저 식별해야만 한다. 그러나 이러한 규칙을 식별하는 작업은 대부분 지식관리자의 수작업에 의해 이루어지고 있다. 본 연구의 목적은 웹으로부터 규칙구성요소 식별을 최대한 자동화하고 지식관리자의 수작업을 최소화함으로써 그 부담을 줄여 주는 데 있다. 이러한 방법으로는 온톨로지를 근간으로 하여 웹 페이지와의 문자열 비교, 이러한 비교의 한계를 극복하기 위한 확장등의 방법이 있다. 첫 번째 방법은 온툴로지 기반으로 규칙식별 할 웹 페이지와 비교를 통해 지식관리자의 규칙식별 과정을 최대한 자동화하여 주는 것이다. 여기서 만약 현재 규칙을 식별하고자 하는 웹 사이트와 유사한 시스템의 규칙들을 활용하여 일반화 된 온툴로지가 구축되었다면, 이 온톨로지를 기반으로 규칙을 식별하고자 하는 웹사이트와의 비교를 통해 규칙구성요소를 자동화하여 추출 할 수 있다. 이러한 온툴로지를 기반으로 규칙을 식별하기 위해서는 문자열 비교 기법을 사용하게 된다. 하지만 단순한 문자열 비교 기법만으로는 규칙을 식별하는 데에 자연어 처리에 대한 한계가 있다. 이를 극복하기 위해 다음의 두 번째 방법을 사용하고자 한다. 두 번째 방법은 정형화되지 않은 정보들을 확장하여 사용하는 것이다. 우선 찾고자 하는 단어들의 원형을 찾기 위한 스테밍 알고리즘 기법, WordNet을 이용하여 동의어 유의어등으로 확장을 하는 WordNet Expansion 기법, 의미 유사도를 측정하기 위한 방법인 Semantic Similarity Measure 등을 단계적으로 수행하여 자동화되고 정확한 규칙식별을 하고자 한다. 이러한 방법들의 조합으로 인하여 규칙구성요소 추출이 되지 않을 후보 단어들의 수를 줄여서 보다 더 정확하고, 지능적인 규칙구성요소 추출 방법론을 제시하고 구현하여 지식관리자의 규칙습득에 대한 부담을 줄여 주고자 한다.

  • PDF

빈발 패턴 네트워크에서 연관 규칙 발견을 위한 아이템 클러스터링

  • O, Gyeong-Jin;Jeong, Jin-Guk;Jo, Geun-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.321-328
    • /
    • 2007
  • 데이터마이닝은 대용량의 데이터에 숨겨진 의미있고 유용한 패턴과 상관관계를 추출하여 의사결정에 활용하는 작업이다. 그 중에서도 고객 트랜잭션의 데이터베이스에서 아이템 사이에 존재하는 연관규칙을 찾는 것은 중요한 일이 되었다. Apriori 알고리즘 이후 연관규칙을 찾기 위해 대용량 데이터베이스로부터 압축된 의미있는 정보를 저장하기 위한 데이터 구조와 알고리즘들이 제안되어 왔다. 본 논문에서는 정점으로 아이템을 표현하고, 간선으로 두 아이템집합을 표현하는 빈발 패턴 네트워크(FPN)이라 불리는 새 자료 구조를 제안한다. 빈발 패턴 네트워크에서 아이템 사이의 연관 관계를 발견하기 위해 이 구조를 어떻게 효율적으로 사용 하느냐에 초점을 두고 있다. 구조의 효율적인 사용을 위하여 한 아이템이 클러스터 내의 아이템과는 유사도가 높고, 다른 클러스터의 아이템과는 유사도가 낮도록 네트워크의 정점을 클러스터링하는 방법을 사용한다. 실험은 신뢰도, 상관관계 그리고 간선 가중치 유사도를 이용하여 네트워크에서 아이템 클러스터링의 정확도를 보여준다. 본 논문의 실험 결과를 통해 신뢰도 유사도가 네트워크의 정점을 클러스터링할 때 클러스터의 정확성에 가장 많은 영향을 미친다는 것을 알 수 있었다.

  • PDF

Effective Association Rule Method for Personalized Recommender System (개인화 추천시스템을 위한 효율적 연관 규칙 방법)

  • Ko, Byoung-Jin;Yu, Young-Hoon;Jo, Ceun-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11c
    • /
    • pp.2133-2136
    • /
    • 2002
  • 인터넷 특성상 방대한 양의 정보와 상품 등으로 사용자들이 원하는 정보를 찾기 위해서 많은 시간을 낭비하고 있는 실정이다. 이러한 사용자의 시간 소모를 중이기 위해서 추천 시스템이 개발되었다. 현재 인터넷 상의 추천 기술 중에서 가장 많이 사용하는 기법으로는 협력적 여과(Collaborative filtering) 방법이다. 그러나, 협력적 추천 방법으로 추천 받기 위해서는 특정수 이상의 아이템에 대한 평가가 필요하며, 또한 비슷한 성향을 가지는 일부 사용자 정보에 근거하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 이러한 문제점이 발생되므로 최근에는 데이터 마이닝(Data Mining) 기법 중 연관 규칙(Association Rule)을 이용한 추천 시스템이 개발되고 있다[1,10]. 그러나, 연관 규칙 기법은 개인별 사용자의 성향을 반영하지 못하는 단점이 있다[4]. 연관 규칙은 단지 대용량 데이터 베이스에서 아이템간의 지지도(Support)와 신뢰도(Confidence)에 근거하여 규칙을 발견하는 특징을 가지고 있기 때문이다. 즉 개인성향을 무시하고 아이템간의 연관성만을 근거로 하여 아이템을 추천하기 때문이다. 본 논문에서는 효율적인 연관 규칙을 이용한 개인화 추천 시스템을 구현하기 위해서 연관 규칙과 여과 방법을 통합한 시스템을 제안한다. 본 시스템에 대하여 성능 비교 실험을 수행함으로써 제안한 방법의 타당성을 제시한다.

  • PDF

Weighted association rules considering item RFM scores (항목 알에프엠 점수를 고려한 가중 연관성 규칙)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1147-1154
    • /
    • 2010
  • One of the important goals in data mining is to discover and decide the relationships between different variables. Association rules are required for this technique and it find meaningful rules by quantifying the relationship between two items based on association measures such as support, confidence, and lift. In this paper, we presented the evaluation criteria of weighted association rule considering item RFM scores as importance of items. Original RFM technique has been used most widely applied method using customer information to find the most profitable customers. And then we compared general association rule technique with weighted association rule technique through the simulation data.

Variable Ordering Algorithms Using Problem Classifying (문제분류규칙을 이용한 변수 순서화 알고리즘)

  • Sohn, Surg-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.127-135
    • /
    • 2011
  • Efficient ordering of decision variables is one of the methods that find solutions quickly in the depth first search using backtracking. At this time, development of variables ordering algorithms considering dynamic and static properties of the problems is very important. However, to exploit optimal variable ordering algorithms appropriate to the problems. In this paper, we propose a problem classifying rule which provides problem type based on variables' properties, and use this rule to predict optimal type of variable ordering algorithms. We choose frequency allocation problem as a DS-type whose decision variables have dynamic and static properties, and estimate optimal variable ordering algorithm. We also show the usefulness of problem classifying rule by applying base station problem as a special case whose problem type is not generated from the presented rule.

Discovery Of Cyclic Association Rule With Loose Cycle and Error Cycle over Loose Cycle (오차를 허용하는 주기적 연관규칙 탐사를 통한 오차의 경향성에 관한 연구)

  • 배수균;남도원;이동하;이전영
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.317-324
    • /
    • 2000
  • 주기적인 연관규칙은 타겟데이터베이스를 일정 단위시간으로 나누었을 때 연관규칙이 만족하는 구간이 일정한 주기마다 발생하는 패턴을 탐색하는 방법이다. 하지만, 이 방법은 엄격한 주기를 가지도록 하여 실제 데이터에 그대로 적용하기가 어려웠다. 예를 들이 편의점 데이터에서 매일 오전 7시-8시 사이에 주기적으로 발생하는 연관규칙을 발견할 때, 이러한 연관규칙을 주기적인 연관규칙이라고 한다. 하지만, 실제 데이터에서는 날씨와 같이 사람의 행동에 영향을 미치는 다른 요인 때문에 항상 일정한 주기를 가지는 연관규칙을 찾기는 어렵다. 본 논문에서는 주기가 일정하지 않은 연관규칙을 찾기 위해서 연관규칙의 주기성을 허용 오차를 포함하며 재정의하고, 오차를 허용하기 위한 탐색 알고리즘을 보완하였다. 반면에, 오차를 허용함으로써 오차를 허용하지 않는 경우보다 더 많은 주기성을 찾을 수 있을 뿐만 아니라, 동일한 주기를 가지지만 오프셋이 다른 여러 개의 비슷한 주기가지 찾게 되어 사용자가 의미 있는 연관규칙을 찾는데 방해가 된다. 본 논문에서는 이를 해결하기 위해서 오차를 허용하는 주기적 연관규칙의 오차의 정도를 측정하기 위한 단위로 집중도(intensity)와 경향성(tendency)을 제안한다. 주기적 연관규칙이 매 주기마다 정확한 세그먼트에 나타나는 정도를 나타내는 집중도와, 최소 평균오차를 의미하는 경향성을 이용하여 유사한 주기들 중에서 대표주기만을 찾을 수 있도록 한다. 또한, 오차를 허용하는 주기적 연관규칙에서 오차가 주로 발생하는 패턴을 분석함으로써 고객들의 수요 경향성을 더 잘 파악할 수 있다. 예를 들어, 평소에는 매일 오진 7시∼8시에 나타나던 연관성이 지각하는 사람들이 같은 월요일에는 1시간 늦은 8시∼9시에 나타난다는 오타 정보까지 파악할 수 있다. 이러한 월요일마다 1시간 늦게 나타나는 오차의 경향성을 나타내는 오차 주기(error cyc1e)를 이용함으로써 고객들의 수요의 경향성을 좀 더 세밀한 부분까지 파악할 수 있게 해 준다.

  • PDF

Mining Time Series Data With Virtual Transaction (트랜잭션이 없는 시계열 데이터로 부터 가상 트랜잭션을 이용한 데이터 마이닝)

  • Kim, Min-Soo;Lee, Joon-Sub;Kim, Ung-Mo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.31-34
    • /
    • 2001
  • 대용량의 데이터들로부터 사용자가 원하는 데이터를 찾기 위하여 많은 데이터 마이닝 기술들이 연구되어 실제 응용프로그램에서 많이 적용되고 있다. 이러한 데이터 마이닝의 기술 중 연관규칙은 항목들의 집합으로 표현되는 트랜잭션에서 각 항목간의 연관성을 찾는데 사용된다. 그러나 실세계에는 트랜잭션이 없이 일련의 이벤트만 시간에 따라서 발생하는 데이터들이 많이 존재한다. 이러한 시계열 이벤트 데이터들로부터 다양한 가상 트랜잭션을 생성하는 기법들을 제시한다. 이러한 가상 트랜잭션 데이터로 변환된 시계열 데이터에 연관규칙, 순차패턴, 주기패턴과 관련된 여러 가지 알고리즘을 바로 적용 함으로서 유용한 규칙들을 발견해 낼 수 있다.

  • PDF