• 제목/요약/키워드: 규칙 생성과 평가

검색결과 197건 처리시간 0.023초

유전자알고리즘을 적용한 침입탐지시스템 (Using Genetic Algorithms for Intrusion Detection Systems)

  • 양지홍;김명준;한명묵
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.517-519
    • /
    • 2002
  • 침입탐지 시스템은 정밀성자 적응성, 그리고 확장성을 필요로 한다. 이와 같은 조건을 포함하면서 복잡한 Network 환경에서 중요하고 기밀성이 유지되어야 할 리소스를 보호하기 위해, 우리는 더욱 구조적이며 지능적인 IDS(Intrusion Detection Systems) 개발의 필요성이 요구되고 있다. 본 연구는 데이터 마이닝(Data mining)을 통해 입 패턴, 즉 침입 규칙(Rules)을 생성한다. 데이터 마이닝 기법 중 분류(Classification)에 초점을 맞추어 분석과 실험을 하였으며, 사용된 데이터는 KDD데이터이다. 이 데이터를 중심으로 침입 규칙을 생성하였다. 규칙생성에는 유전자알고리즘(Genetic Algorithm : GAs)을 적용하였다. 즉, 오용탐지(Misuse Detection) 기법을 실험하였으며, 생성된 규칙은 침입데이터를 대표하는 규칙으로 비정상 사용자와 정상 사용자를 분류하게 된다. 규칙은 "Time Based Traffic Model", "Host Based Traffic Model", "Content Model" 이 세 가지 모듈에서 각각 상이한 침입 규칙을 생성하게 된다. 본 시스템에서 도출된 침입 규칙은 430M Test data set에서 테스트한 결과 평균 약94.3%의 성능 평가 결과를 얻어 만족할 만한 성과를 보였다.의 성능 평가 결과를 얻어 만족할 만한 성과를 보였다.

  • PDF

효율적인 진화알고리즘을 이용한 적응형 퍼지 분류 규칙 생성 (Generating Adaptive Fuzzy Classification Rules using An Efficient Evolutionary Algorithm)

  • 류정우;김성은;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.769-771
    • /
    • 2005
  • 데이터 특성이 연속적이고 애매할 때 퍼지규칙으로 분류 규칙을 표현하는 것은 매우 유용하고 효과적이다. 그러나 일반적으로 정확하지 않은 데이터 특성에 대해서 소속함수를 결정한다는 것은 어려운 일이다. 본 논문에서는 진화알고리즘을 이용하여 효과적인 퍼지 분류 규칙을 자동으로 생성하는 방법을 제안한다. 제안한 방법에서 규칙의 정확성과 이해성을 고려하여 최적화된 소속함수를 생성하기 위해 진화알고리즘을 사용한다. 먼저 지도 군집화로 진화를 위한 초기 소속함수를 생성한다. 진화알고리즘은 전역적 최적 해를 찾는데 효과적이다. 그러나 시간에 대한 효율성이 낮다. 특히 모델 최적화 문제에서는 개체 평가 단계에서 많은 시간이 소요된다. 따라서 본 논문에서는 전체 데이터를 여러 개의 부분 데이터들로 나누고 개체들은 전체 데이터 대신 매번 부분 데이터를 임의적으로 선택하여 개체를 평가함으로써 수행 시간을 단축시킬 수 있는 진화 방법을 제안한다. 제안한 퍼지 분류 규칙 생성 방법의 타당성을 검증하기 위한 실험 데이터로 UCI에서 제공하는 데이터들을 사용하였으며, 실험 결과는 기존 방법에 비해 평균적으로 더 효과적임을 확인하였다.

  • PDF

학습데이터를 이용하여 생성한 규칙과 사전을 이용한 명사 추출기 (A Noun Extractor based on Dictionaries and Heuristic Rules Obtained from Training Data)

  • 장동현;맹성현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회 및 제1회 형태소 분석기 및 품사태거 평가 워크숍
    • /
    • pp.151-156
    • /
    • 1999
  • 텍스트로부터 명사를 추출하기 위해서 다양한 기법이 이용될 수 있는데, 본 논문에서는 학습 데이터를 이용하여 생성한 규칙과 사전을 이용하는 단순한 모델을 통해 명사를 효과적으로 추출할 수 있는 기법에 대하여 기술한다. 사용한 모델은 기본적으로 명사, 어미, 술어 사전을 사용하고 있으며 명사 추정은 학습 데이터를 통해 생성한 규칙을 통해 이루어진다. 제안한 방법은 복잡한 언어학적 분석 없이 명사 추정이 가능하며, 복합명사 사전을 이용하지 않고 복합 명사를 추정할 수 있는 장점을 지니고 있다. 또한, 명사추정의 주 요소인 규칙이나 사전 등록어의 추가, 갱신 등이 용이하며, 필요한 경우에는 특정 분야의 텍스트 분석을 위한 새로운 사전의 추가가 가능하다. 제안한 방법을 이용해 "제1회 형태소 분석기 및 품사 태거 평가대회(MATEC '99')"의 명사 추출기 분야에 참가하였으며, 본 논문에서는 성능평가 결과를 제시하고 평가결과에 대한 분석을 기술하고 있다. 또한, 현재의 평가기준 중에서 적합하지 않은 부분을 규정하고 이를 기준으로 삼아 자체적으로 재평가한 평가결과를 제시하였다.

  • PDF

침입 탐지를 위한 효율적인 퍼지 분류 규칙 생성 (Generation of Efficient Fuzzy Classification Rules for Intrusion Detection)

  • 김성은;길아라;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권6호
    • /
    • pp.519-529
    • /
    • 2007
  • 본 논문에서는 효율적인 침입 탐지를 위해 퍼지 규칙을 이용하는 방법을 제안한다. 제안한 방법은 퍼지 의사결정 트리의 생성을 통해 침입 탐지를 위한 퍼지 규칙을 생성하고 진화 알고리즘을 사용하여 최적화한다. 진화 알고리즘의 효율적인 수행을 위해 지도 군집화를 사용하여 퍼지 규칙을 위한 초기 소속함수를 생성한다. 제안한 방법의 진화 알고리즘은 적합도 평가시 퍼지 규칙(퍼지 의사결정 트리)의 성능과 복잡성을 고려하여 평가한다. 또한 데이타 분할을 이용한 평가와 퍼지 의사결정 트리의 생성과 평가 시간을 줄이는 방법으로 소속정도 캐싱과 zero-pruning을 사용한다. 제안한 방법의 성능 평가를 위해 KDD'99 Cup의 침입 탐지 데이타로 실험하여 기존 방법보다 성능이 향상된 것을 확인하였다. 특히, KDD'99 Cup 우승자에 비해 정확도가 1.54% 향상되고 탐지 비용은 20.8% 절감되었다.

ANFIS에서 생성된 규칙의 해석용이성 평가 (Evaluation of Interpretability for Generated Rules from ANFIS)

  • 송희석;김재경
    • 지능정보연구
    • /
    • 제15권4호
    • /
    • pp.123-140
    • /
    • 2009
  • 퍼지신경망 모형은 인공신경망의 네트워크 구조 표현방법 및 학습알고리듬과 퍼지시스템의 추론방법을 통합한 모형으로 제어 및 예측분야에 성공적으로 적용되고 있다. 본 연구에서는 퍼지신경망 모형 중 우수한 예측정확도로 인해 최근 각광받고 있는 ANFIS (Adaptive Network-based Fuzzy Inference System) 모형에서 생성된 퍼지규칙의 해석용이성을 평가하였다. ANFIS모형은 인간 전문가와 상호작용하면서 규칙을 정제해 나갈 수 있다. 특히 인간전문가의 사전지식을 이용하여 초기 퍼지규칙을 만들고 난 후 모형을 학습하면 최적에 수렴하는 시간을 단축할 뿐 아니라, 전역 최적치 도달가능성이 높아진다고 보고되고 있다. 이러한 관점에서 볼 때 규칙의 해석용이성은 인간 전문가와의 상호작용을 위해 매우 중요한 이슈가 될 수 있다. 본 연구에서는 ANFIS모형과 의사결정나무 모형에서 생성된 규칙을 해석용이성 관점에서 비교하기 위한 측도를 제안하고 각 규칙들을 비교하였다. 본 연구에서 제안된 해석용이성 측도들은 규칙을 생성하는 다양한 기계학습 모형의 규칙생성 능력을 평가하는 기준으로도 활용될 수 있을 것이다.

  • PDF

PIPPER를 이용한 전문가시스템의 규칙 생성 모듈 구현 (Implementation of a Rule Generation Module for Expert System using RIPPER)

  • 김군오;김진상
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.131-137
    • /
    • 1999
  • 전문가시스템 개발에 있어서 지식획득 병목현상(knowledge acquisition bottleneck)은 해결해야 할 큰 걸림돌중 하나이다. 지식획득을 위한 여러 과정을 단순화하고 자동화함으로 지식공학자의 작업을 최소화하면서 전문지식을 쉽고 빠르게 획득할 수 있도록 지식획득시스템을 설계·구현한다면 전문가시스템의 대중화는 지금보다 쉽게 이루어질 것이다. 본 연구는 지식 획득시스템 설계와 구현을 위한 연구의 일환으로 기계학습의 한 방법인 PIPPER(Repeated Incremental Pruning to Produce Error Reduction)를 이용하여 규칙을 생성하고 생성된 규칙을 JESS(Justification based Expert System Shell)에서 처리하도록 하였다. 규칙을 생성하기 위한 데이터는 Bohanec이 1997년도에 만든 자동차 평가 데이터베이스(Car Evaluation Database)를 사용하여 실험하였으며, 1700여 개의 레코드에서 약 40개의 규칙이 생성되었고, 생성된 규칙은 지식베이스의 정당성을 위반하지 않으면서 실행되었다.

  • PDF

심박수변이도 분석을 위한 확률적 지식기반 모형 (A probabilistic knowledge model for analyzing heart rate variability)

  • 손창식;강원석;최락현;박형섭;한성욱;김윤년
    • 한국산업정보학회논문지
    • /
    • 제20권3호
    • /
    • pp.61-69
    • /
    • 2015
  • 본 논문에서는 이산 웨이블릿 변환을 통해 추출된 시간 영역과 주파수 영역의 특징들을 활용하여 심박수변이도를 확률적인 지식으로 분석할 수 있는 방법을 제안하였다. 제안된 방법에서 지식획득 알고리즘은 규칙생성과 규칙평가 단계로 구성되어 있으며, 규칙생성에서는 ROC 분석을 통해 수치적인 속성값을 이산화된 구간으로 변환하고, 서로 다른 의사결정값을 포함하는 구간들 사이에 일관성 정도를 비교함으로써 감축된 규칙-집합을 생성한다. 이때 규칙-집합 내에 각 규칙에 대해서 확률적 해석을 위한 3가지 척도를 추정하였다. 제안된 모형의 효과성은 심혈관질환 병력을 가진 58명의 심전도 데이터로부터 심방세동을 식별할 수 있는 5가지 규칙을 생성하였고, 이들 규칙의 분별력을 평가하였다. 실험결과, 제안된 모형으로부터 생성된 지식은 4가지 성능평가 척도에 대해서 각각 93%의 정확도를 보여주었다.

가중 퍼지 Pr/T 네트를 이용한 가중 퍼지 추론 (Weighted Fuzzy Reasoning Using Weighted Fuzzy Pr/T Nets)

  • 조상엽
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.757-768
    • /
    • 2003
  • 본 논문에서는 가중 퍼지 Pr/T 네트에 기반을 둔 규칙기반시스템을 위한 가중 퍼지 추론알고리즘을 제안한다. 이때 퍼지 생성규칙의 확신도, 규칙에 나타나는 술어의 진리값과 술어의 중요도를 나타내는 가중값을 퍼지 숫자로 표현한다. 제안한 추론알고리즘은 퍼지 생성규칙에 있는 술어의 중요도에 따라 부여한 가중값을 이용하여 추론하기 때문에 $\circled1$ 술어의 가중값 없이 퍼지 생성규칙의 확신도만을 기반으로 단순하게 min과 max 연산을 하거나[10], $\circled2$ 술어의 가중값 없이 퍼지 생성규칙에 있는 퍼지 개념에 따라 믿음값 평가함수로 퍼지 생성규칙의 믿음값을 평가하는[12] 방법보다 더 유연하고 사람의 직관과 추론에 가깝다.

문항 응답 데이터에서 문항간 연관규칙의 질적 향상을 위한 도구 개발 (A Measure for Improvement in Quality of Association Rules in the Item Response Dataset)

  • 곽은영;김현철
    • 컴퓨터교육학회논문지
    • /
    • 제10권3호
    • /
    • pp.1-8
    • /
    • 2007
  • 본 논문은 연관규칙 마이닝을 이용하여 성취도 평가 결과인 문항 응답 데이터를 대상으로 의미있는 문항간 관련성을 찾아낼 수 있는 도구를 개발하는데 연구의 목적이 있다. 제안된 도구는 의미없는 데이터들을 제거하여 보다 더 흥미(interestingness)있는 연관규칙을 생성하도록 하며, 이러한 결과는 교수-학습 방법이나 문제은행의 질을 향상시키는데 필요한 많은 정보를 제공할 수 있을 것이다. 이를 위하여 임의의 문항 응답 실험 데이터 집합을 생성하고 정보이론(Information Theory) 기반의 surprisal 이라는 도구를 개발하여 의미 없는 데이트를 제거한 후, 연관규칙을 추출하였다. 실험 데이터는 특정 문항간 관계가 의도적으로 빈발 생성되도록 만들어지며, 추출된 연관규칙이 그러한 문항간 관계를 적절히 반영하고 있는지의 여부를 평가하고, 원본 데이터와 지지도(support) 기반으로 추출된 연관규칙과 비교함으로써 surprisal 도구의 타당성을 증명하였다.

  • PDF

데이터 분할 평가 진화알고리즘을 이용한 효율적인 퍼지 분류규칙의 생성 (Generation of Efficient Fuzzy Classification Rules Using Evolutionary Algorithm with Data Partition Evaluation)

  • 류정우;김성은;김명원
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.32-40
    • /
    • 2008
  • 데이터 속성 값이 연속적이고 애매할 때 퍼지 규칙으로 분류규칙을 표현하는 것은 매우 유용하면서도 효과적이다. 그러나 효과적인 퍼지 분류규칙을 생성하기 위한 소속함수를 결정하기는 어렵다. 본 논문에서는 진화알고리즘을 이용하여 효과적인 퍼지 분류규칙을 자동으로 생성하는 방법을 제안한다. 제안한 방법은 지도 군집화로 클래스 분포에 따라 초기 소속함수를 생성하고, 정확하고 간결한 규칙을 생성할 수 있도록 초기 소속함수를 진화시키는 방법이다. 또한 진화알고리즘의 시간에 대한 효율성을 높이기 위한 방법으로 데이터 분할 평가 진화 방법을 제안한다. 데이터 분할 평가 진화 방법은 전체 학습 데이터를 여러 개의 부분 학습 데이터들로 나누고 개체는 전체 학습 데이터 대신 부분 학습 데이터를 임의로 선택하여 평가하는 방법이다. UCI 벤치마크 데이터로 기존 방법과 비교 실험을 통해 평균적으로 제안한 방법이 효과적임을 보였다. 또한 KDD'99 Cup의 침입탐지 데이터에서 KDD'99 Cup 우승자에 비해 1.54% 향상된 인식률과 20.8% 절감된 탐지비용을 보였고 데이터 분할 평가 진화 방법으로 개체평가 시간을 약 70% 감소시켰다.