Using Genetic Algorithms for Intrusion Detection Systems

유전자알고리즘을 적용한 침입탐지시스템

  • 양지홍 (경원대학교 전자계산대학원) ;
  • 김명준 (경원대학교 전자계산대학원) ;
  • 한명묵 (경원대학교 전자계산대학원)
  • Published : 2002.10.01

Abstract

침입탐지 시스템은 정밀성자 적응성, 그리고 확장성을 필요로 한다. 이와 같은 조건을 포함하면서 복잡한 Network 환경에서 중요하고 기밀성이 유지되어야 할 리소스를 보호하기 위해, 우리는 더욱 구조적이며 지능적인 IDS(Intrusion Detection Systems) 개발의 필요성이 요구되고 있다. 본 연구는 데이터 마이닝(Data mining)을 통해 입 패턴, 즉 침입 규칙(Rules)을 생성한다. 데이터 마이닝 기법 중 분류(Classification)에 초점을 맞추어 분석과 실험을 하였으며, 사용된 데이터는 KDD데이터이다. 이 데이터를 중심으로 침입 규칙을 생성하였다. 규칙생성에는 유전자알고리즘(Genetic Algorithm : GAs)을 적용하였다. 즉, 오용탐지(Misuse Detection) 기법을 실험하였으며, 생성된 규칙은 침입데이터를 대표하는 규칙으로 비정상 사용자와 정상 사용자를 분류하게 된다. 규칙은 "Time Based Traffic Model", "Host Based Traffic Model", "Content Model" 이 세 가지 모듈에서 각각 상이한 침입 규칙을 생성하게 된다. 본 시스템에서 도출된 침입 규칙은 430M Test data set에서 테스트한 결과 평균 약94.3%의 성능 평가 결과를 얻어 만족할 만한 성과를 보였다.의 성능 평가 결과를 얻어 만족할 만한 성과를 보였다.

Keywords