• Title/Summary/Keyword: 규칙 기반 분류

Search Result 324, Processing Time 0.04 seconds

An Intrusion Detection System Using Time Delay Neural Network (시간지연 신경망을 이용한 침입 탐지 시스템)

  • 강병두;문채현;정성윤;박수범;김상균
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.662-665
    • /
    • 2001
  • 기존의 규칙기반 침입탐지 시스템은 사후처리시 규칙 추가로 인하여 새로운 변종의 공격을 탐지하지 못한다. 본 논문에서는 규칙기반 시스템의 한계점을 극복하기 위하여, 시간지연 신경망(Time Delay Neural Network; 이하 TDNN) 침입탐지 시스템을 제안한다. 네트워크강의 패킷은 바이트 단위를 하나의 픽셀로 하는 0에서 255사이 값으로 이루어진 그레이 이미지로 볼 수 있다. 이러한 연속된 패킷이미지를 시간지연 신경망의 학습패턴으로 사용한다. 정상적인 흐름과 비정상적인 흐름에 대한 패킷 이미지를 학습하여 두 가지 클래스에 대한 신경망 분류기를 구현한다. 개발하는 침입탐지 시스템은 알려진 다양한 침입유형뿐만 아니라, 새로운 변종에 대해서도 분류기의 유연한 반응을 통하여 효과적으로 탐지할 수 있다.

  • PDF

Semi-supervised classification with LS-SVM formulation (최소제곱 서포터벡터기계 형태의 준지도분류)

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.461-470
    • /
    • 2010
  • Semi supervised classification which is a method using labeled and unlabeled data has considerable attention in recent years. Among various methods the graph based manifold regularization is proved to be an attractive method. Least squares support vector machine is gaining a lot of popularities in analyzing nonlinear data. We propose a semi supervised classification algorithm using the least squares support vector machines. The proposed algorithm is based on the manifold regularization. In this paper we show that the proposed method can use unlabeled data efficiently.

Web Page Classification System based upon Ontology (온톨로지 기반의 웹 페이지 분류 시스템)

  • Choi Jaehyuk;Seo Haesung;Noh Sanguk;Choi Kyunghee;Jung Gihyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.723-734
    • /
    • 2004
  • In this paper, we present an automated Web page classification system based upon ontology. As a first step, to identify the representative terms given a set of classes, we compute the product of term frequency and document frequency. Secondly, the information gain of each term prioritizes it based on the possibility of classification. We compile a pair of the terms selected and a web page classification into rules using machine learning algorithms. The compiled rules classify any Web page into categories defined on a domain ontology. In the experiments, 78 terms out of 240 terms were identified as representative features given a set of Web pages. The resulting accuracy of the classification was, on the average, 83.52%.

The Method of Effective Inference Using Rough Set and Fuzzy Naive Bayes Theory (러프집합과 퍼지 네이브 베이스 이론을 이용한 효율적인 추론 방법)

  • Hwang Jeong-Sik;Son Chang-Sik;Chung Hwan-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • 퍼지 규칙 기반 시스템에서 분류 및 경계를 결정하기 위한 방법으로 퍼지 규칙을 학습하는 다양한 방법들이 제안되고 있다. 그리고 추론 규칙간의 상관성을 고려하여 불필요한 속성을 제거함으로써 좀 더 효율적인 추론 결과를 얻을 수 있다. 따라서 본 논문에서는 퍼지 규칙 기반 시스템에서 각 규칙에 따른 결정 테이블를 작성하고 러프집합을 이용하여 불필요한 속성을 제거하였으며 규칙의 확신도에 퍼지 네이브 베이스 이론을 적용한 추론 방법을 제안한다.

  • PDF

Intelligent Distributed Platform using Mobile Agent based on Dynamic Group Binding (동적 그룹 바인딩 기반의 모바일 에이전트를 이용한 인텔리전트 분산 플랫폼)

  • Mateo, Romeo Mark A.;Lee, Jae-Wan
    • Journal of Internet Computing and Services
    • /
    • v.8 no.3
    • /
    • pp.131-143
    • /
    • 2007
  • The current trends in information technology and intelligent systems use data mining techniques to discover patterns and extract rules from distributed databases. In distributed environment, the extracted rules from data mining techniques can be used in dynamic replications, adaptive load balancing and other schemes. However, transmission of large data through the system can cause errors and unreliable results. This paper proposes the intelligent distributed platform based on dynamic group binding using mobile agents which addresses the use of intelligence in distributed environment. The proposed grouping service implements classification scheme of objects. Data compressor agent and data miner agent extracts rules and compresses data, respectively, from the service node databases. The proposed algorithm performs preprocessing where it merges the less frequent dataset using neuro-fuzzy classifier before sending the data. Object group classification, data mining the service node database, data compression method, and rule extraction were simulated. Result of experiments in efficient data compression and reliable rule extraction shows that the proposed algorithm has better performance compared to other methods.

  • PDF

An Experimental Study on Smoothness Regularized LDA in Hyperspectral Data Classification (하이퍼스펙트럴 데이터 분류에서의 평탄도 LDA 규칙화 기법의 실험적 분석)

  • Park, Lae-Jeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.534-540
    • /
    • 2010
  • High dimensionality and highly correlated features are the major characteristics of hyperspectral data. Linear projections such as LDA and its variants have been used in extracting low-dimensional features from high-dimensional spectral data. Regularization of LDA has been introduced to alleviate the overfitting that often occurs in a small-sized training data set and leads to poor generalization performance. Among them, a smoothness regularized LDA seems to be effective in the feature extraction for hyperspectral data due to its capability of utilizing the high correlatedness. This paper studies the performance of the regularized LDA in hyperspectral data classification experimentally with varying conditions of the training data. In addition, a new dual smoothness regularized LDA is proposed and evaluated that makes use of both the spectral-domain and spatial-domain correlations between neighboring pixels.

Answer Extraction of Concept based Question-Answering System (개념 기반 질의-응답 시스템에서의 정답 추출)

  • Ahn Young-Min;Oh Su-Hyun;Kang Yu-Hwan;Seo Young-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.448-451
    • /
    • 2005
  • In this paper, we describe a method of answer extraction on a concept-based question-answering system. The concept-based question answering system is a system which extract answer using concept information. we have researched the method of answer extraction using concepts which analyzed and extracted through question analysing with answer extracting rules. We analyzed documents including answers and then composed answer extracting rules. Rules consist of concept and syntactic information, we generated candidates of answer through the rules and then chose answer.

  • PDF

Design and Implementation of Forest Fire Prediction System using Generalization-based Classification Method (일반화 기반 분류기법을 이용한 산불예측시스템 설계 및 구현)

  • Kim, Sang-Ho;Kim, Dea-Jin;Ryu, Keun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.12-23
    • /
    • 2003
  • The expansion of internet and the development of communication technology have brought about an explosive increasement of data. Further progress has led to the increasing demand for efficient and effective data analysis tools. According to this demand, data mining techniques have been developed to find out knowledge from a huge amounts of raw data. This paper suggests a generalization based classification method which explores rules from real world data appearing repeatedly. Also, it analyzed the relation between weather data and forest fire, and efficiently predicted through it as a prediction model by applying the suggested generalization based classification method to forest fire data. Additionally, the proposed method can be utilized variously in the important field of real life like the analysis and prediction on natural disaster occurring repeatedly, the prediction of energy demand and so forth.

  • PDF

A Study on the CRM Application for Activation of Cyber Education (사이버교육활성화를 위한 CRM방법의 적용에 관한 연구)

  • 김한신;이공섭;이창호
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.05a
    • /
    • pp.145-150
    • /
    • 2002
  • 인터넷을 기반으로 하는 사이버교육은 활발 전개되고 있다 하지만 사이버교육에서의 CRM 적용사례는 부족한 현실이다. 본 연구는 RFM, Prediction, 고착도, 연관규칙, 분류규칙등 데이터 마이닝기법들을 활용하여 학습자의 수준에 맞는 강의추천전략을 제안했다.

  • PDF

Extracting Rules from Neural Networks with Continuous Attributes (연속형 속성을 갖는 인공 신경망의 규칙 추출)

  • Jagvaral, Batselem;Lee, Wan-Gon;Jeon, Myung-joong;Park, Hyun-Kyu;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.22-29
    • /
    • 2018
  • Over the decades, neural networks have been successfully used in numerous applications from speech recognition to image classification. However, these neural networks cannot explain their results and one needs to know how and why a specific conclusion was drawn. Most studies focus on extracting binary rules from neural networks, which is often impractical to do, since data sets used for machine learning applications contain continuous values. To fill the gap, this paper presents an algorithm to extract logic rules from a trained neural network for data with continuous attributes. It uses hyperplane-based linear classifiers to extract rules with numeric values from trained weights between input and hidden layers and then combines these classifiers with binary rules learned from hidden and output layers to form non-linear classification rules. Experiments with different datasets show that the proposed approach can accurately extract logical rules for data with nonlinear continuous attributes.