Proceedings of the Korea Multimedia Society Conference
/
2001.11a
/
pp.662-665
/
2001
기존의 규칙기반 침입탐지 시스템은 사후처리시 규칙 추가로 인하여 새로운 변종의 공격을 탐지하지 못한다. 본 논문에서는 규칙기반 시스템의 한계점을 극복하기 위하여, 시간지연 신경망(Time Delay Neural Network; 이하 TDNN) 침입탐지 시스템을 제안한다. 네트워크강의 패킷은 바이트 단위를 하나의 픽셀로 하는 0에서 255사이 값으로 이루어진 그레이 이미지로 볼 수 있다. 이러한 연속된 패킷이미지를 시간지연 신경망의 학습패턴으로 사용한다. 정상적인 흐름과 비정상적인 흐름에 대한 패킷 이미지를 학습하여 두 가지 클래스에 대한 신경망 분류기를 구현한다. 개발하는 침입탐지 시스템은 알려진 다양한 침입유형뿐만 아니라, 새로운 변종에 대해서도 분류기의 유연한 반응을 통하여 효과적으로 탐지할 수 있다.
Journal of the Korean Data and Information Science Society
/
v.21
no.3
/
pp.461-470
/
2010
Semi supervised classification which is a method using labeled and unlabeled data has considerable attention in recent years. Among various methods the graph based manifold regularization is proved to be an attractive method. Least squares support vector machine is gaining a lot of popularities in analyzing nonlinear data. We propose a semi supervised classification algorithm using the least squares support vector machines. The proposed algorithm is based on the manifold regularization. In this paper we show that the proposed method can use unlabeled data efficiently.
In this paper, we present an automated Web page classification system based upon ontology. As a first step, to identify the representative terms given a set of classes, we compute the product of term frequency and document frequency. Secondly, the information gain of each term prioritizes it based on the possibility of classification. We compile a pair of the terms selected and a web page classification into rules using machine learning algorithms. The compiled rules classify any Web page into categories defined on a domain ontology. In the experiments, 78 terms out of 240 terms were identified as representative features given a set of Web pages. The resulting accuracy of the classification was, on the average, 83.52%.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.117-120
/
2005
퍼지 규칙 기반 시스템에서 분류 및 경계를 결정하기 위한 방법으로 퍼지 규칙을 학습하는 다양한 방법들이 제안되고 있다. 그리고 추론 규칙간의 상관성을 고려하여 불필요한 속성을 제거함으로써 좀 더 효율적인 추론 결과를 얻을 수 있다. 따라서 본 논문에서는 퍼지 규칙 기반 시스템에서 각 규칙에 따른 결정 테이블를 작성하고 러프집합을 이용하여 불필요한 속성을 제거하였으며 규칙의 확신도에 퍼지 네이브 베이스 이론을 적용한 추론 방법을 제안한다.
The current trends in information technology and intelligent systems use data mining techniques to discover patterns and extract rules from distributed databases. In distributed environment, the extracted rules from data mining techniques can be used in dynamic replications, adaptive load balancing and other schemes. However, transmission of large data through the system can cause errors and unreliable results. This paper proposes the intelligent distributed platform based on dynamic group binding using mobile agents which addresses the use of intelligence in distributed environment. The proposed grouping service implements classification scheme of objects. Data compressor agent and data miner agent extracts rules and compresses data, respectively, from the service node databases. The proposed algorithm performs preprocessing where it merges the less frequent dataset using neuro-fuzzy classifier before sending the data. Object group classification, data mining the service node database, data compression method, and rule extraction were simulated. Result of experiments in efficient data compression and reliable rule extraction shows that the proposed algorithm has better performance compared to other methods.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.4
/
pp.534-540
/
2010
High dimensionality and highly correlated features are the major characteristics of hyperspectral data. Linear projections such as LDA and its variants have been used in extracting low-dimensional features from high-dimensional spectral data. Regularization of LDA has been introduced to alleviate the overfitting that often occurs in a small-sized training data set and leads to poor generalization performance. Among them, a smoothness regularized LDA seems to be effective in the feature extraction for hyperspectral data due to its capability of utilizing the high correlatedness. This paper studies the performance of the regularized LDA in hyperspectral data classification experimentally with varying conditions of the training data. In addition, a new dual smoothness regularized LDA is proposed and evaluated that makes use of both the spectral-domain and spatial-domain correlations between neighboring pixels.
Proceedings of the Korea Contents Association Conference
/
2005.05a
/
pp.448-451
/
2005
In this paper, we describe a method of answer extraction on a concept-based question-answering system. The concept-based question answering system is a system which extract answer using concept information. we have researched the method of answer extraction using concepts which analyzed and extracted through question analysing with answer extracting rules. We analyzed documents including answers and then composed answer extracting rules. Rules consist of concept and syntactic information, we generated candidates of answer through the rules and then chose answer.
Journal of the Korean Association of Geographic Information Studies
/
v.6
no.1
/
pp.12-23
/
2003
The expansion of internet and the development of communication technology have brought about an explosive increasement of data. Further progress has led to the increasing demand for efficient and effective data analysis tools. According to this demand, data mining techniques have been developed to find out knowledge from a huge amounts of raw data. This paper suggests a generalization based classification method which explores rules from real world data appearing repeatedly. Also, it analyzed the relation between weather data and forest fire, and efficiently predicted through it as a prediction model by applying the suggested generalization based classification method to forest fire data. Additionally, the proposed method can be utilized variously in the important field of real life like the analysis and prediction on natural disaster occurring repeatedly, the prediction of energy demand and so forth.
Over the decades, neural networks have been successfully used in numerous applications from speech recognition to image classification. However, these neural networks cannot explain their results and one needs to know how and why a specific conclusion was drawn. Most studies focus on extracting binary rules from neural networks, which is often impractical to do, since data sets used for machine learning applications contain continuous values. To fill the gap, this paper presents an algorithm to extract logic rules from a trained neural network for data with continuous attributes. It uses hyperplane-based linear classifiers to extract rules with numeric values from trained weights between input and hidden layers and then combines these classifiers with binary rules learned from hidden and output layers to form non-linear classification rules. Experiments with different datasets show that the proposed approach can accurately extract logical rules for data with nonlinear continuous attributes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.