• 제목/요약/키워드: 규칙 기반 분류

검색결과 324건 처리시간 0.03초

구간값 퍼지집합에서 규칙 가중치를 고려한 분류방법 (The Method of Classification Considering Rule Weights in the Interval-Valued Fuzzy Sets)

  • 손창식;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.85-89
    • /
    • 2006
  • 구간값 퍼지집합은 일반적인 퍼지집합보다 언어적인 의사결정 절차에서 매핑의 정확성과 계산의 효율성이 뛰어나고, 규칙의 가중치는 패턴 분류문제에서 분류 경계를 효율적으로 조정할 수 있다는 장점을 가지고 있다. 따라서 본 논문에서는 퍼지규칙 기반 분류방법을 구간값 퍼지규칙 기반 분류방법으로 확장하고 규칙의 가중치를 고려한 분류방법을 제안한다. 모의실험에서는 일반 퍼지집합에서 규칙 가중치를 고려한 분류방법과 구간값 퍼지집합에서 규칙 가중치를 고려한 분류방법을 비교하였다.

  • PDF

규칙 성장 기반 퍼지 분류기의 설계 (Design of Growing Rule-based Fuzzy Classifier)

  • 김욱동;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1375-1376
    • /
    • 2015
  • 본 논문은 퍼지 클러스터링을 이용한 규칙 성장 기반 퍼지 분류기의 설계에 대해서 소개한다. 본 논문의 목적은 퍼지 클러스터링을 통해 형성된 증가된 퍼지 규칙을 이용한 새로운 설계 방법론을 개발하는 것이다. 제안된 분류기는 네개의 기능적인 부분으로 구성된다. 퍼지 규칙의 전반부는 퍼지 클러스터링 알고리즘을 이용해 구성된 멤버쉽 함수를 나타낸다. 후반부는 지역 모델을 구성한다. 지역 모델의 파라미터는 가중 최소 자승법에 의해 추정된다. 추론부에서는, 각 퍼지 규칙의 에러 측정후, 가장 높은 에러를 갖는 하나의 퍼지 규칙이 선택된다. 규칙성장 부분에서는, 네트워크의 강화를 위해 규칙의 성장 과정이 이루어지며, 선택된 규칙은 제안된 분류기에서 더 나은 성능을 위해 두 개 또는 세 개의 세분화된 퍼지 규칙으로 나누어진다. 이러한 새로운 규칙은 context 기반 Fuzzy C-Means 클러스터링에 의해서 형성된다. 제안된 규칙 기반 분류기의 효용성을 토론하며, 머신 러닝 데이터를 이용하여 실험을 수행하였다.

  • PDF

규칙 및 SVM 기반 알고리즘에 의한 심전도 신호의 리듬 분류 (Rhythm Classification of ECG Signal by Rule and SVM Based Algorithm)

  • 김성완;김대환
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권9호
    • /
    • pp.43-51
    • /
    • 2013
  • 신뢰성 있는 부정맥 진단을 위해서는 리듬 구간 및 심박 단위의 종합적인 분석을 통하여 심전도 신호에 대한 분류 결과가 제시되어야 한다. 본 논문에서는 심전도 신호의 특징점에 기반하여 규칙기반 분류를 이용한 일정 구간의 리듬 분석을 수행하고 SVM기반 분류를 이용한 심박 단위의 리듬분석을 첨가하였다. 규칙기반 분류에서는 리듬 구간의 특징에 대하여 임상 자료로부터 도출된 규칙 베이스를 이용하여 리듬 유형을 분류하도록 하며, SVM기반 분류에서는 심박 단위의 특징에 대하여 미리 학습된 다중 SVM 분류기를 이용하여 단조 리듬 및 주요 비정상 심박을 분류하도록 한다. MIT-BIH 부정맥 데이터베이스를 이용한 실험을 통하여 11가지 리듬 유형에 대하여 규칙기반 방법만을 적용하였을 경우 68.52%, 규칙기반과 SVM기반의 융합 방법을 적용하였을 경우 87.04%의 분류 성능을 각각 보였다. SVM기반 방법으로 단조 리듬과 배열 리듬에 대한 오분류 개선을 통하여 분류 성능에서 19% 정도가 향상됨을 확인하였다.

엔트로피 분포를 이용한 규칙기반 분류분석 연구 (Rule-Based Classification Analysis Using Entropy Distribution)

  • 이정진;박해기
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.527-540
    • /
    • 2010
  • 규칙기반 분류분석(rule-based classification analysis)은 직관적인 이해가 쉽고 알고리즘이 복잡하지 않아 최근 대용량 데이터마이닝에 많이 이용되는 기법이다. 하지만 현재의 규칙기반 분석은 여러 개의 규칙들을 찾은후 이 규칙들을 단순히 다수결이나 또는 중요도의 가중 합으로서 새로운 데이터를 분류한다. 본 연구에서는 다항분포를 이용한 이항데이터의 분류분석 기법을 규칙 조합방법에 응용하고자한다. 다향분포의 추정을 위해서는 변형된 반복 비율 적합(iterative proportional fitting; IPF) 알고리즘을 이용하여 최대 엔트로피 분포(entropy distribution)를 찾는다. 시뮬레이션 실험 결과 이 방법은 두 집단의 데이터가 서로 유사한 경우 어느 정도 의미 있는 분류 결과를 보여주였다.

분류시스템의 분류 규칙 발견을 위한 유전자 알고리즘 (Genetic Algorithm to find Classification Rule for Classifier Systems)

  • 김대희;박상호
    • 한국산업정보학회논문지
    • /
    • 제9권4호
    • /
    • pp.16-25
    • /
    • 2004
  • 분류시스템은 현재의 유용한 규칙들로부터 새로운 규칙들을 만들어 가기 위해 학습하는 규칙 기반 시스템이다. 본 논문에서는 방대한 데이터베이스에서 유용한 정보를 얻는 분류시스템의 분류 규칙 발견을 위한 유전자 알고리즘 을 제안하였다. 제안된 방법을 자동차 보험문제에 적용하여 제안된 유전자 알고리즘 기반 분류시스템의 성능을 평가하였다.

  • PDF

나이브 베이지안 분류자와 메세지 규칙을 이용한 스팸메일 필터링 시스템 (Spam-mail Filtering System Using Naive Bayesian Classifier and Message Rule)

  • 조한철;조근식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.223-225
    • /
    • 2002
  • 인터넷의 급속한 성장과 함께 E-Mail은 대표적인 통신수단의 하나가 되어버렸다. 편리하다는 점을 이용해서 엄청난 양의 스팸메일이 매일같이 쏟아져 오고 , 그 문제점의 심각성에 정보통신부에서 정보통신망 이용촉진 및 정보보호 등에 관한 법률이라는 새로운 법률까지 생겨났다. 본 논문에서는 이 법률에서 요구하는 '광고'라는 문구를 걸러내는 등의 메시지 규칙을 갖는 시스템과 기존의 문서 분류에 널리 쓰이던 나이브 베이지안 분류자(Naive Baesian Classifier)를 결합한 스팸 메일 필터링 시스템(Spam-mail Fitering System)을 제안한다. 제안된 시스템에서는 사용자가 직접 규칙을 작성할 필요없이 학습한 데이터를 갖고 자동으로 스팸메일을 분류할 수가 있다. 들어온 메일은 메시지 규칙 기반 필터가 먼저 적용되고, 메세지 규칙 기반 필터에서 분류되지 않으면 나이브 베이지안 필터에서 분류된다. 실험에서는 제안된 시스템의 성능을 평가하기 위해서 메시지 규칙을 사용한 시스템 및 나이브 베이지만 분류자 시스템과 비교 평가하였다. 또한 임계치를 변경함으로써 제안된 시스템의 성능을 높일 수있도록 하였다.

  • PDF

규칙기반 리듬 분류에 의한 심전도 신호의 비정상 검출 (Abnormality Detection of ECG Signal by Rule-based Rhythm Classification)

  • 류춘하;김성완;김세윤;김태훈;최병재;박길흠
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.405-413
    • /
    • 2012
  • 심전도 신호의 신뢰성 있는 진단을 위해서는 높은 분류 정확도와 함께 낮은 오분류 성능이 중요하며, 특히 비정상을 정상으로 진단하는 것은 심검자에게 치명적인 문제로 귀결될 수 있다. 본 논문에서는 임상 진단 기준을 반영하는 규칙기반 분류 알고리즘을 이용하여 비정상 리듬을 검출 및 분류하는 방법을 제안한다. 규칙기반 분류는 리듬 구간의 특징에 대한 규칙 베이스를 이용하여 리듬 유형을 분류하도록 하며, 이 때 규칙 베이스는 임상 및 내과 분야의 심전도 전문 임상 자료에 기반한 본 논문의 기준표에 따라 구성된다. MIT-BIH 부정맥 데이터베이스를 이용한 제안 방법의 실험을 통하여 정상동조율, 박동조율, 및 다양한 비정상 리듬에 대한 리듬 유형의 분류가 가능함을 확인하였으며, 특히 비정상 리듬 검출 측면에서는 오분류가 전혀 발생되지 않는 결과를 보였다.

표준 통계 분류 코드 자동 생성 (Automatic Generation of Standard Classification Code)

  • 임희석
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 춘계학술발표논문집
    • /
    • pp.388-390
    • /
    • 2006
  • 본 논문은 수동 코드 분류 규칙과 예제기반의 자동 학습을 이용하는 한국어 표준 산업/직업 코드 자동분류 시스템을 제안한다. 제안된 시스템은 산업과 직업에 대하여 설명하는 자연어를 입력받아 해당 산업/직업 분류 코드를 생성하는 시스템으로 수작업으로 구축된 규칙을 적용한 후 규칙이 적용되지 않는 레코드는 예제 기반의 학습을 이용한 자동 분류 시스템에 의해서 해당 코드를 할당한다.

  • PDF

RPA 기법을 이용한 규칙의 확장 (Expanding Rule Using Recursive Partition Averaging)

  • 한진철;김상귀;윤충화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.489-492
    • /
    • 2004
  • 미지의 패턴을 분류하기 위해서 사용되는 메모리 기반 학습 기법은 만족할만한 분류 성능을 보여주고 있다. 하지만 메모리 기반 학습기법은 단순히 패턴과 메모리에 저장된 예제들 간의 거리를 기준으로 분류하므로, 패턴을 분류하는 처리과정을 설명할 수 없다는 문제점을 가지고 있다. 본 논문에서는 RPA(Recursive Partition Averaging) 기법을 이용하여 패턴을 분류하는 과정을 설명할 수 있는 규칙 추출 알고리즘과 또한 일반화 성능을 향상시키기 위하여 규칙의 조건을 확장하는 알고리즘을 제안한다.

  • PDF

지식 기반 시스템에서 GIS 자료를 활용하기 위한 기계 학습 기법에 관한 연구 - Landsat ETM+ 영상의 토지 피복 분류를 사례로 (A Machine learning Approach for Knowledge Base Construction Incorporating GIS Data for land Cover Classification of Landsat ETM+ Image)

  • 김화환;구자용
    • 대한지리학회지
    • /
    • 제43권5호
    • /
    • pp.761-774
    • /
    • 2008
  • 원격탐사에서 위성 영상의 디지털 처리 기술이 발달하면서 GIS 자료와 지식 기반 전문가 시스템과의 통합에 대한 관심이 증가하고 있다. 본 연구에서는 위성영상을 토지피복 분류하는 과정에서 GIS 자료를 통합하기 위하여 기계 학습 기법과 규칙 기반 분류 기법을 적용하였다. 사례 지역을 대상으로 Landsat ETM+ 영상과 고도, 경사, 향, 수역과의 거리, 도로와의 거리, 인구밀도 등의 GIS 자료를 함께 활용하였다. C5.0 추론 기계 학습 알고리듬을 이용하여 350개의 표본점으로부터 결정 트리와 분류 규칙을 생성하였다. 본 연구에서 도출된 규칙을 이용하여 분류한 결과, 고독 수역과의 거리, 인구밀도 등의 GIS 자료가 규칙 기반 분류에 효과적인 것으로 나타났다. 본 연구에서 제안한 기계 학습과 지식 기반 분류 기법을 이용하면 다양한 GIS 자료들을 통합하여 위성영상을 보다 효과적으로 분류할 수 있다.