• Title/Summary/Keyword: 규칙기반 모델

Search Result 610, Processing Time 0.036 seconds

The Rule-based Agent Modeling and Simulation considering the Evacuation Behavior Characteristics on the Passenger Ship Fire (여객선 화재시 피난행동특성을 고려한 규칙기반 에이전트 M&S)

  • Lee, Eun-Bok;Shin, Suk-Hoon;You, Yong-Jun;Chi, Sung-Do;Kim, Jae-Ick
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.111-117
    • /
    • 2011
  • This paper suggests the passenger model considered evacuation behavioral characteristics on the passenger ship fire using a rules-based agent technique. The existing evacuation simulation system was modeled only passenger speed. The speed-based model considered passenger's physical characteristics, so it couldn't consider evacuation behavioral characteristics. For solving this problem, we modeled the passenger model using a rule-based agent applied evacuation behavioral characteristics. The rule-based agent consists of knowledge base and inference engine. In knowledge base, we represented evacuation behavioral characteristics, and chose the examples of the evacuation behavioral characteristics to show various patterns of behavior. And we simulated in the IMO MSC/Circ.1238 example 8 and we proved the simulation results could represent variety patterns of human behavior.

POS-Tagging Model Combining Rules and Word Probability (규칙과 어절 확률을 이용한 혼합 품사 태깅 모델)

  • Hwang, Myeong-Jin;Kang, Mi-Young;Kwon, Hyuk-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.11-15
    • /
    • 2006
  • 본 논문은, 긍정적 가중치와 부정적 가중치를 통해 표현되는 규칙에 기반을 둔 품사 태깅 모델과, 형태 소 unigram 정보와 어절 내의 카테고리 패턴에 기반하여 어절 확률을 추정하는 품사 태깅 모델의 장점을 취하고 단점을 보완할 수 있는 혼합 품사 태깅 모델을 제안한다. 이 혼합 모델은 먼저, 규칙에 기반한 품사 태깅을 적용한 후, 규칙이 해결하지 못한 결과에 대해서 통계적인 기법을 사용하여 품사 태깅을 한다. 본 연구는 어절 내 카테고리 패턴정보에 따른 파라미터 set과 형태소 unigram만을 이용해 어절 확률을 계산해 내므로 다른 통계기반 접근방법에서와는 달리 작은 크기의 통계사전만을 필요로 하며, 카테고리 패턴 정보를 사용함으로써 통계기반 접근 방법의 가장 큰 문제점인 data sparseness 문제 또한 줄일 수 있다는 이점이 있다. 특히, 본 논문에서 사용할 통계 모델은 어절 확률에 기반을 두고 있기 때문에 한국어의 특성을 잘 반영할 수 있다. 본 논문에서 제안한 혼합 모델은 규칙이 적용된 후에도 후보열이 둘 이상 남아 오류로 반환되었던 어절 중 24%를 개선한다.

  • PDF

Design of Growing Rule-based Fuzzy Classifier (규칙 성장 기반 퍼지 분류기의 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1375-1376
    • /
    • 2015
  • 본 논문은 퍼지 클러스터링을 이용한 규칙 성장 기반 퍼지 분류기의 설계에 대해서 소개한다. 본 논문의 목적은 퍼지 클러스터링을 통해 형성된 증가된 퍼지 규칙을 이용한 새로운 설계 방법론을 개발하는 것이다. 제안된 분류기는 네개의 기능적인 부분으로 구성된다. 퍼지 규칙의 전반부는 퍼지 클러스터링 알고리즘을 이용해 구성된 멤버쉽 함수를 나타낸다. 후반부는 지역 모델을 구성한다. 지역 모델의 파라미터는 가중 최소 자승법에 의해 추정된다. 추론부에서는, 각 퍼지 규칙의 에러 측정후, 가장 높은 에러를 갖는 하나의 퍼지 규칙이 선택된다. 규칙성장 부분에서는, 네트워크의 강화를 위해 규칙의 성장 과정이 이루어지며, 선택된 규칙은 제안된 분류기에서 더 나은 성능을 위해 두 개 또는 세 개의 세분화된 퍼지 규칙으로 나누어진다. 이러한 새로운 규칙은 context 기반 Fuzzy C-Means 클러스터링에 의해서 형성된다. 제안된 규칙 기반 분류기의 효용성을 토론하며, 머신 러닝 데이터를 이용하여 실험을 수행하였다.

  • PDF

Hybridlnference Engine for System Diagnosis (진단 시스템을 위한 혼합형 추론 엔진)

  • Kim, Jin-Pyung;Lee, Gil-Jae;Kim, Moon-Hyun
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2005.05a
    • /
    • pp.171-176
    • /
    • 2005
  • 본 논문에서는 진단시스템의 추론성능을 향상시키기 위한 방법으로서, 사례 기반 추론을 통해서 규칙 기반 추론의 단점을 보완하여 성능을 향상시키는 혼합형 추론 모델을 제안한다. 본 모델의 특징은 규칙 기반 추론의 확장성 문제와 규칙화 할 수 없는 예외적인 상황에 대한 문제점을 사례 기반 추론에서 사례로 저장하여 규칙 기반 추론의 단점을 보완하는데 있다. 이런 두 모델의 문제점을 해결하는 과정은 첫째로, 문제에 따라 규칙기반추론 모듈의 베이스를 통해서 적절한 규칙을 적용 후 추론을 적용하여 근접한 해를 얻어낸다. 두 번째로, 규칙베이스에 저장되어 있지 않은 문제에 대해서는 사례 라이브러리를 검색하고 유사성 검사를 통해서 저장된 사례를 찾아 입력된 사례에 적용하여 문제를 해결한다. 셋째로, 해결된 문제에 대해서 수정작업을 통해 사례 라이브러리를 확장한다. 이와 같이 세 과정을 통해 본 논문에서 제안하는 방법론의 성과를 측정하기 위하여 정비 메뉴얼을 규칙화하여 규칙베이스를 구축하였고 전문가들의 경험적인 지식에 대해서는 사례라이브러리로 구축하였다. 또한 지식베이스를 통해서 진단을 수행하고 해결된 문제에 대해서 정확도 검사를 통해 진단의 정확성을 측정하여 혼합형추론엔진의 성능을 검증하였다.

  • PDF

A MDA Transformation System for Building EJB Applications (EJB 어플리케이션 생성을 위한 MDA 변환 규칙 정의)

  • Lee, Jin-Yeal;La, Hyun-Jung;Kim, Soo-Dong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.436-438
    • /
    • 2005
  • 모델 기반 아키텍처 (Model Driven Architecture, MDA)는 플랫폼 독립적인 모델로부터 변환 규칙을 이용하여 특정 플랫폼 용 모델을 생성하는 소프트웨어 자동화 기술로 각광을 받고 있다. EJB(Enterprise JavaBeans)는 컴포넌트 기반의 분산 컴퓨팅을 위한 아키텍처로써 Java 기반 어플리케이션 개발에서 가장 널리 사용되는 개발 플랫폼이다. 기존의 PIM에서 EJB 용 PSM으로 변환 규칙에 대한 연구는 아직 미흡하고 체계적이지 못하다. 본 논문에서는 PIM 의 구조적인 구성요소와 EJB 용 PSM 의 구성요소를 비교 분석하여 변환 규칙을 정의한다. EJB 어플리케이션 개발을 위해 제안된 변환 규칙을 적용한다면 모델간의 대응관계를 효율적으로 표현 할 수 있기 때문에 이들간의 일관성과 추적성을 높일 수 있고 제품의 생산성, 유지보수성을 높일 수 있다.

  • PDF

규칙기반과 신경망 모델을 결합한 한국어 글자-음소 변환 시스팀 개발에 관한 연구

  • Kim, Se-Hun;Lee, Ju-Heon
    • Annual Conference on Human and Language Technology
    • /
    • 1991.10a
    • /
    • pp.307-320
    • /
    • 1991
  • 본 연구는 한국어 음성합성 시스팀에서 한글 텍스트를 음소로 변환 시키는 규칙기반과 신경망을 결합한 한글-음소 변환 시스팀을 제안하고 이를 위해 시스팀 모델을 설계하고 시스팀의 각 구성요소들을 설명하며 한국어 음운 변동 규칙중 설측음화 데이타와 설측음화에 상충되는 데이타를 사용하여 시스팀을 실험하고 제안된 모형의 타당성을 분석한다.

  • PDF

PRAiSE: A Rule-based Process-centered Software Engineering Environment (PRAiSE : 규칙 기반 프로세스 중심 소프트웨어 공학 환경)

  • Lee, Hyung-Won;Lee, Seung-Iin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.3
    • /
    • pp.246-256
    • /
    • 2005
  • Rule-based paradigm is one of the principal types of software process modeling and enaction approaches, as they provide formality and flexibility sufficient to handle complex processes. However, the systems adopting rule-based paradigms are hard to define and understand process models, and their inference engine should be modified or redeveloped at worst according to the change of process language. In this paper, we describe a rule-based PSEE(Process-Centered Software Engineering Environment) PRAiSE that solves the above limitations of existing rule-based PSEEs as well as maintains the merits of rule-based paradigm such as the ability to incorporate the nature of software processes flexibly in which dynamic changes and parallelism are pervasive and prevalent. PRAiSE provides RAiSE, a graphical Process modeling language, and defined process models are interpreted and enacted by process engine implemented using CLiPS, a rule based expert system tool.

Genetically Optimized Self-Organizing Fuzzy-Set based Polynomial Neural Networks (유전론적 최적 자기구성 퍼지 집합 기반 다항식 뉴럴네트워크)

  • 노석범;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.303-306
    • /
    • 2004
  • 기존의 퍼지 규칙에 기반을 둔 퍼지 다항식 뉴론(FPN)들로 구성된 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 그러나, SOFPNN의 기본 뉴론인 퍼지 규칙 기반 다항식 뉴론의 경우 입력변수가 많아질수록 규칙수가 기하급수적으로 증가한다는 단점을 가지고 있으나 본 노문에서 제안한 퍼지 집합 기반 다항식 뉴론(FSPN)의 규칙수는 입력 변수들이 서로 독립적이므로 규칙의 증가가 퍼지 규칙 기반 다항식 뉴런보다는 적다는 장점을 가지고 있다. 이러한 특성을 기반으로 기존의 SOFPNN의 노드에 퍼지 규칙 기반 다항식 뉴런 대신에 퍼지 집합 기반 다항식 뉴런을 적용한 SOFPNN을 제안하여 기존의 SOFPNN과 성능을 비교하였다. 최적의 자기 구성 퍼지 집합기반 다항식 뉴럴 네트워크를 구축하기 위하여 SOFPNN에서처럼 유전자 알고리즘을 이용하여 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하였다.

  • PDF

Hybrid Approach Combining Deep Learning and Rule-Based Model for Automatic IPC Classification of Patent Documents (딥러닝-규칙기반 병행 모델을 이용한 특허문서의 자동 IPC 분류 방법)

  • Kim, Yongil;Oh, Yuri;Sim, Woochul;Ko, Bongsoo;Lee, Bonggun
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.347-350
    • /
    • 2019
  • 인공지능 관련 기술의 발달로 다양한 분야에서 인공지능 활용에 대한 관심이 고조되고 있으며 전문영역에서도 기계학습 기법을 활용한 연구들이 활발하게 이루어지고 있다. 특허청에서는 분야별 전문지식을 가진 분류담당자가 출원되는 모든 특허에 국제특허분류코드(이하 IPC) 부여 작업을 수행하고 있다. IPC 분류와 같은 전문적인 업무영역에서 딥러닝을 활용한 자동 IPC 분류 서비스를 제공하기 위해서는 기계학습을 이용하는 분류 모델에 분야별 전문지식을 직관적으로 반영하는 것이 필요하다. 이를 위해 본 연구에서는 딥러닝 기반의 IPC 분류 모델과 전문지식이 반영된 분류별 어휘사전을 활용한 규칙기반 분류 모델을 병행하여 특허문서의 IPC분류를 자동으로 추천하는 방법을 제안한다.

  • PDF

TAKTAG: Two phase learning method for hybrid statistical/rule-based part-of-speech disambiguation (TAKTAG: 통계와 규칙에 기반한 2단계 학습을 통한 품사 중의성 해결)

  • Shin, Sang-Hyun;Lee, Geun-Bae;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.169-174
    • /
    • 1995
  • 품사 태깅은 형태소 분석 이후 발생한 모호성을 제거하는 것으로, 통계적 방법과 규칙에 기 반한 방법이 널리 사용되고 있다. 하지만, 이들 방법론에는 각기 한계점을 지니고 있다. 통계적인 방법인 은닉 마코프 모델(Hidden Markov Model)은 유연성(flexibility)을 지니지만, 교착어(agglutinative language)인 한국어에 있어서 제한된 윈도우로 인하여, 중의성 해결의 실마리가 되는 어휘나 품사별 제대로 참조하지 못하는 경우가 있다. 반면, 규칙에 기반한 방법은 차체가 품사에 영향을 받으므로 인하여, 새로운 태그집합(tagset)이나 언어에 대하여 유연성이나 정확성을 제공해 주지 못한다. 이러한 각기 서로 다른 방법론의 한계를 극복하기 위하여, 본 논문에서는 통계와 규칙을 통합한 한국어 태깅 모델을 제안한다. 즉 통계적 학습을 통한 통계 모델이후에 2차적으로 규칙을 자동학습 하게 하여, 통계모델이 다루지 못하는 범위의 규칙을 생성하게 된다. 이처럼 2단계의 통계와 규칙의 자동 학습단계를 거치게 됨으로써, 두개 모델의 단점을 보강한 높은 정확도를 가지는 한국어 태거를 개발할 수 있게 하였다.

  • PDF