• Title/Summary/Keyword: 규산질

Search Result 194, Processing Time 0.025 seconds

Assessment of Silicate Fetilizers Application Affecting Soil Properties in Paddy Field (논토양에서 규산질비료 시용이 토양 환경에 미치는 영향)

  • Joo, Jin-Ho;Lee, Seung-Been
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1016-1022
    • /
    • 2011
  • Application of silicate fertilizers is typically practiced with several year's interval to amend soil quality and improve rice productivity at the paddy field in Korea. Most of silicate fertilizers applied in Korea is slag-originated silicate fertilizer. Some water soluble silicate fertilizers are manufactured and commercially available. The objective of this study was to assess changes of soil chemical properties in paddy field by applying slag-originated silicate fertilizer and water soluble silicate fertilizer. Field experiment was conducted on a silt loam paddy soil, where four levels of each silicate fertilizer were applied in soil at the rate of 0, 1, 2, 4 times of the recommended levels. Application of slag-originated silicate fertilizer increased soil pH, while no significant pH increase occurred with the treatment of water soluble silicate fertilizers. Soil pH increased 0.4~0.5 with the 1 time of recommended level of slag-originated silicate fertilizer. Available $SiO_2$ contents also significantly increased with the treatment of slag-originated silicate fertilizer at 15 and 35 days after treatment, while decreased after 60 days after treatment possibly due to rice uptake. Exchangeable Ca, Mg and available phosphate contents in soil increased with application of slag-originated silicate fertilizer, while a little increases for them were shown with the application of soluble silicate fertilizer. $SiO_2$/N ratios in rice straw for 1 time of recommended level of slag-originated silicate fertilizer was 11.5, while that of control was 8.4, which was much lower value. Throughout this study, soil application of slag-originated silicate fertilizer enhanced soil chemical properties, while water soluble silicate fertilizer application in soil needs further study resulting in a little effects on soil property.

Effect of Growth and Nitrogen Use Efficiency by Application of Mixed Silicate and Nitrogen Fertilizer on Zoysiagrass Cultivation (한국잔디 재배에 규산질 비료 시비가 생육과 질소이용효율에 미치는 영향)

  • Han, Jeong-Ji;Lee, Kwang-Soo;Park, Yong-Bae;Bae, Eun-Ji
    • Weed & Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.137-142
    • /
    • 2014
  • This study was conducted to investigate the effect of silicate mixed with nitrogen fertilizer on improving the growth and reducing nitrogen input of zoysiagrass. Plant height, fresh and dry weight of shoots, roots, and stolons, the number of shoots and total of stolons length were increased with highest in silicate mixed with nitrogen 24 kg/10a than nitrogen 24 kg/10a, and it showed no significance in silicate mixed with nitrogen 18 kg/10a. Nitrogen use efficiency in mixed silicate fertilizer was increased by 25-30% than single nitrogen fertilization. Moreover, the contents of available $SiO_2$, and organic matters of silicate fertilization on soil was higher than not silicate fertilization on soil. The silicate enhanced the growth and density of zoysiagrass, while it was a crucial factor to affect the chemical property of the soil.

Effect of Water Soluble Silicate Fertilizers on Stem Strength and Yield of Paddy Rice (수용성 규산질 비료의 시용에 의한 벼 줄기 강도 강화와 수량에 대한 효과)

  • Lee, Seung Been;Joo, Jin Ho;Shin, Joung Do;Kim, Chang Gyun;Jung, Yeong Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1017-1021
    • /
    • 2012
  • A field experiment was conducted to evaluate effect of water soluble silicate fertilizer (WSS) application on rice plants with respect to comparing with powdery slag-originated silicate fertilizer (PSS) and granular one (GSS). The 30-day seedlings were transplanted on May 10, 2012. The plot size was $25m^2$, and the planting density was 15 hills $m^{-2}$. The standard application level was $2kg\;ha^{-1}$ for WSS, $200kg\;ha^{-1}$ for GSS, $200kg\;ha^{-1}$ for GSS. The application rates were 50 %, 100 %, and 200 % of the standard levels. The soil and plant samples were taken after harvest on September 10. Strength weight of the stem was measured on the center of the 5-cm of the fourth internode. Nutrient contents and yield of grains and were evaluated. The strength weight of the stem was positively correlated with the silicate content of the stem with the highly significant $R^2$ of 0.601. The strength of the stem was satisfactorily enforced by application of 50 % WSS and GSS, and 100 % PSS. Application of 50 % or 100 % of WSS showed little difference in rice yield in comparison with application of 100 % of PSS or GSS. Therefore, application of $20kg\;ha^{-1}$ of WSS would be recommendable for rice cultivation which enforced stem strength, and increased yield of rice.

Availability of Silicate Fertilizer and its Effect on Soil pH in Upland Soils (밭토양에 처리된 규산질 비료의 유효화와 토양반응 교정효과)

  • Cho, Hyun-Jong;Choi, Hee-Youl;Lee, Yong-Woo;Lee, Yoon-Jung;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.104-110
    • /
    • 2004
  • Although silicon (Si) has been Down to be an essential element fer rice growth, the optimum soil level of Si for upland crops remains unestablished. This study was conducted to estimate the availability of Si fertilizer in upland soils, and also effect of the Si fertilizer on soil pH was examined. Different application rates of Si fertilizer were tested using faur soils of different available Si levels and pHs in a series of laboratory incubation study. The treatments included Si fertilizer levels of 100, 200, and 300 kg/10a. Also to examine the effects of compost and lime on the availability of Si fertilizer in upland soil, treatment of silicate fertilizer 200 kg/10a + compost 1,000 kg/10a and lime alone treatment were included. Changes of Si availability in the soils during the incubation period were measured by 1 N NaOAc extraction procedure. Availability of Si fertilizer was different among the tested soils, and about $9.1{\sim}19.2%$ of the applied Si fertilizer was extracted after 60 days laboratory incubation. Application rate could not influence the availability of Si fertilizer. Application of compost with Si fertilizer could not increase Si availability in upland soils, but lime treatment could increase Si availability. Soil pH increased by application of Si fertilizer, but the effect of Si fertilizer on soil pH was minimal. When Si fertilizer is applied on the purpose of Si nutrition in acid upland soils, lime treatment should be coupled with the Si fertilizer for remediation of soil acidity.

Reducing Nitrogen Fertilization Level of Rice (Oryza sativa L.) by Silicate Application in Korean Paddy Soil (논토양에서 규산질 비료 시용에 의한 질소 시비 저감수준 평가)

  • Lee, Chang-Hoon;Yang, Min-Suk;Chang, Ki-Woon;Lee, Yong-Bok;Chung, Ki-Yeol;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.194-201
    • /
    • 2005
  • Silicate (Si) fertilizers are well-known for soil amendment and to improve rice productivity as well as nitrogen efficiency. In this study, we investigated the possible reduction level of nitrogen fertilization for rice cultivation by amending Si fertilizer application. Field experiments were carried out to evaluate the productivity of rice (Oryza sativa L.) on a silt loam soil, where three levels of nitrogen (0, 110 and $165kg\;ha^{-1}$) were selected and Si fertilizer as a slag type was applied at 0, 1 and 2 times of the recommendation level (available $SiO_2\;130mg\;kg^{-1}$). Application of Si fertilizer increased significantly the rice yield and nitrogen efficiency. With increasing N uptake of rice, 1 and 2 times of recommended levels of Si fertilization could decrease nitrogen application level to about 76 and $102kg\;N\;ha^{-1}$ to produce the target yield, the maximum yield in the non-Si amended treatment. Silicate fertilizer improved soil pH and significantly increased available phosphate and Si contents. Conclusively, the Si fertilizer could be a good alternative source for soil amendment, restoring the soil nutrient balance and to reduce the nitrogen application level in rice cultivation.

Determination of Optimum Rate and Interval of Silicate Fertilizer Application for Rice Cultivation in Korea (벼에 대한 규산질비료의 시용량 및 시용주기 결정)

  • Song, Yo-Sung;Jun, Hee-Joong;Jung, Beung-Gan;Park, Woo-Kyun;Lee, Ki-Sang;Kwak, Han-Kang;Yoon, Jung-Hui;Lee, Choon-Soo;Yeon, Byeong-Yeol;Kim, Pil-Joo;Yoon, Young-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.354-363
    • /
    • 2007
  • In order to investigate the optimum rate and interval of silicate fertilizer application for rice cultivation, Chucheong byeo variety, one of commonly cultivated rice cultivar in Korea was planted on two different wetland rice soils located on Hwaseong-si from 2002 to 2005; Jisan series(a member of the fine loamy, mixed, mesic family of Fluvaquentic Endoaquepts), known as "Productive Paddy Soil", without any conspicuous limiting factor, and Seokcheon series (a member of the coarse loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquetps), known as "Sandy Paddy Soil", sandiness being major limiting factor. There were three rate treatments of silicate fertilizer application; the amount of silicate fertilizers needed to adjust the available soil silicate contents to 130, 200, and $270mg\;kg^{-1}$ was applied, in the first year only. There was an additional plot; applying the amount of silicate fertilizer needed to adjust soil available silicate to 130 ppm every year, which would serve as the base for the evaluation of residual effects of silicate fertilizers in the plots where different rates of silicate fertilizer were applied. From the yield data in first year, it was found that optimum available silica in the soil are $154mg\;kg^{-1$ and $160mg\;kg^{-1}$, in Jisan and Seogcheon soils, respectably. The duration of residual effects of silicate fertilizer was different depending upon the amount of applied silicate fertilizers and the soils. The higher the application rate, the residual effect lasted longer, and the residual effect was lasted longer in Jisan(clay loam) soil than in Seogcheon(sandy loam) soil. During four years, sum of the rate of contribution to increase available soil silica of applied silicate fertilizer in different soils ranged 18.6% and 24.1% in Jisan soil and Seogcheon soil, respectively. This may suggest that much portion of applied silicate would be either lost from the soil or remain in the soil as insoluble form. This deserves further study.

Effects of the Applications of Slaked Lime and Silicate Fertilizers on the Seedling Growth and Yield of Grass/Clover Mixed Swards on Newly Reclaimed Hilly Soil (신개간 산지토양에서 소석회 및 규산질 비료의 시용이 혼파목초의 초기생육 및 수량에 미치는 효과 비교)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.23 no.1
    • /
    • pp.23-30
    • /
    • 2003
  • This pot experiment was conducted to find out the effects of slaked lime($L_{0}$ ; 0.00, $L_1$; 3.75, $L_2$; 7.50, $L_3$; 11.25g/pot) and silicate fertilizers($S_1$; 3.75, $S_2$; 7.50, $S_3$; 11.25g/pot) on the seedling growth and yield of grass/clover mired swards on newly reclaimed hilly soil, and it's differences between both the soil improvers. The results obtained are summarized as fellows: Comparing with the $L_{0}$ treatment without soil improver, the seedling vigour and yields of both forages were markedly enhanced by the application of soil improver. The positive offsets of soil improvers tended to be relative higher on ladino clover than orchardgrass in mixed swards. The seeding vigour, botanical composition, and yield of ladino clover were more markedly influenced by the application of silicate fertilizer than slaked line. The yields of ladino clover were increased 75.8% by the 51 over $L_1$, and 32.0% by the $S_2$ over $L_2$, respectively.

Effects of Different Silicate Fertilizers on Rice Plant (벼에 대(對)한 규산질비료(珪酸質肥料) 비종별(肥種別) 시용효과(施用效果))

  • Lee, Ki-Sang;Ha, Ho-Sung;Ahn, Sang-Bae;Huh, Beom-Lyang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.32-37
    • /
    • 1986
  • Field experiments were carried out to investigate the effect of wollastonite and iron refinery slag on the paddy rice yield insandyloam soil in which available silica level is 56 ppm. The results are as follows: 1. Application of wollastonite and iron refinery slag reduced the tillering and the height of rice plant in the early growth stage, while promoted those in the late growth stage. 2. As the same amounts of wollastonite and iron refinery slag were applied, the effectiveness on yield increase was same between the two silicate fertilizers. 3. The recovery ratio as measured by absorbed $SiO_2$ on rice plant over applied $SiO_2$, was greater in wollastonite than in iron refinery slag. 4. The increasing of the ratio of $SiO_2$ over N absorbed in rice plant trends toward decreasing the infection rate of neck blast. 5. The left-over ratio of available $SiO_2$ in soil over applied $SiO_2$, was greater in iron refinery slag than in wollastonite. 6. As measured by silica soluble in 0.5 N-HCl solution, 1 kg application per 10a of both silicate fertilizers increased about 2.3 ppm in soil silica content after harvest, respectively.

  • PDF

Effects of Application Season and Particle-size Distribution of Silicate Fertilizer on Rice Yields (수도에 대한 규산질(珪酸質) 비료(肥料)의 시용시기(施用時期) 및 입도별(粒度別) 효과)

  • Yoo, Sun-Ho;Park, Lee-Dal;Lee, Yun-Hwan;Kang, Kyu-Yung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.89-95
    • /
    • 1979
  • A field experiment was conducted to investigate the effects of season of application and particle-size distribution of silicate fertilizer on rice yields of Indica type, Milyang 23 and Japonica type Jinheung. The application of silicate fertilizer at the rate of 250kg per 10a increased greatly rice yields. Rice yields were a little higher when silicate fertilizer was applied at transplanting time (Spring application) than applied in Autumn of preceding year (Autumn application) and increased with increasing content of fine particles of silicate fertilizer. However, the difference in effects between the season of application was insignificant and the silicate fertilizer of particles to pass by 100% through a 8 mesh sieve and by 60% through a 25 mesh sieve, 8-25(60%) was as effective as the one to meet silicate fertilizer specifications, 10-28(60%). Silica content of plant samples did not show any significant effects of season of application and particle-size distribution of silicate fertilizer, whereas samples taken at 50 days after tran planting showed significant effects of season of application and particle-size distribution. Silica content of straw of Jinheung was highest when 8-25(60%) was applied. Silica content of soils before the experiment was 36.7 ppm and the content increased to range of 159.5-273.8 ppm and 80.3-134.4 ppm in the plots of Spring application and Autumn application respectively.

  • PDF

Effect of a Silicate Fertilizer Supplemented to a Medium on the Growth and Development of Potted Plants (배지에 첨가한 규산질 비료가 분식물의 발근과 생육에 미치는 영향)

  • Bae, Min Ji;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • This experiment was carried out to examine the effect of a silicate fertilizer on the growth and development of potted plants. Cutting of Kalanchoe blossfeldiana 'Kaluna' and 'Taos', and Dianthus caryophyllus L. 'Kazan' and 'Tula' were grown in 50 and 128-cell plug trays, respectively. Rooted cuttings transplanted to the mixture of a commercial medium and perlite (5:1, v/v) supplemented with a silicate fertilizer at 0, 40, 80, 120 or $160g{\cdot}L^{-1}$ medium was evaluated. A silicate fertilizer supplementation at $40g{\cdot}L^{-1}$ medium resulted in the greatest plant height, leaf thickness, and root fresh and dry weights in both kalanchoe and carnation. However, plant height was suppressed in the treatment of a silicate fertilizer supplementation at higher concentrations in both kalanchoe and carnation. According to the scanning electron microscope images of transversal sections of tissues of roots and leaves in kalanchoe and carnation, the treatment of a silicate fertilizer supplementation at $40g{\cdot}L^{-1}$ medium resulted in plants with more compact tissue than the control.