• Title/Summary/Keyword: 궤도시뮬레이션

Search Result 222, Processing Time 0.024 seconds

Optimal Scheduling of Satellite Tracking Antenna of GNSS System (다중위성 추적 안테나의 위성추적 최적 스케쥴링)

  • Ahn, Chae-Ik;Shin, Ho-Hyun;Kim, You-Dan;Jung, Seong-Kyun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.666-673
    • /
    • 2008
  • To construct the accurate radio satellite navigation system, the efficient communication each satellite with the ground station is very important. Throughout the communication, the orbit of each satellite can be corrected, and those information will be used to analyze the satellite satus by the operator. Since there are limited resources of ground station, the schedule of antenna's azimuth and elevation angle should be optimized. On the other hand, the satellite in the medium earth orbit does not pass the same point of the earth surface due to the rotation of the earth. Therefore, the antenna pass schedule must be updated at the proper moment. In this study, Q learning approach which is a form of model-free reinforcement learning and genetic algorithm are considered to find the optimal antenna schedule. To verify the optimality of the solution, numerical simulations are conducted.

Analysis of Flight Performance Reserve for Upper Stage of Satellite Launch Vehicles (위성발사체 상단의 비행성능여유 분석)

  • Song, Eun-Jung;Choi, Jiyoung;Cho, Sang-bum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.386-392
    • /
    • 2017
  • This paper considers the analysis of the flight performance reserve, which is required propellant to compensate various launch vehicle performance deviations, to inject the payload of a 3-staged launch vehicle to a circular sun synchronous orbit at a height of 700 km. The various error sources, which affect the orbit injection accuracy, and their uncertainty are defined first. Then the sensitivity analysis, which has the advantage that each error source effect can be investigated independently, is performed for the extreme ${\pm}3{\sigma}$ conditions of the launch vehicle performance errors. Monte carlo simulations are also conducted to compute the propellant reserve, which can consider the combined effects of each error source. Finally the obtained flight performance reserves by the two approaches are compared and it is confirmed that they show similar results.

Station Keeping Maneuver Planning Using COMS Flight Dynamic Software

  • Kim, Hae-Yeon;Lee, Byoung-Sun;Hwang, Yoo-La;Shin, Dong-Suk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.16-21
    • /
    • 2007
  • Various perturbations by the sun, the moon and the earth itself cause a continuous change in nominal position of a geostationary satellite. In order to maintain the satellite within a required window, north-south station keeping for controlling inclination and right ascension of ascending node, and east-west station keeping for controlling eccentricity and longitude are required. In this paper, station keeping maneuver simulation for Communication, Ocean and Meteorological Satellite (COMS) was performed using COMS Flight Dynamics Software(FDS) and the results were analyzed. COMS performs weekly based east-west/north-south station keeping to maintain satellite within ${\pm}0.05^{\circ}$ at the nominal longitude of $128.2^{\circ}E$. In addition, COMS performs wheel off-loading maneuver twice a day to eliminate attitude error caused by one-solar wing in the south panel of the satellite. In this paper, station keeping maneuver considering wheel off-loading maneuver was performed and the results showed that COMS can be maintained well within ${\pm}0.05^{\circ}$ window using COMS FDS.

  • PDF

Study on the Attitude Determination of KOREASAT3 using Extended Kalman Filter about Gyro Anomaly Case (자이로 이상상태가 있는 경우의 확장칼만필터를 이용한 무궁화위성 3호의 자세결정 연구)

  • Park, Young-Woong;Park, Bong-Kyu;Bang, Hyo-Choong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2258-2261
    • /
    • 2002
  • 본 논문에서는 정지궤도 통신위성인 무궁화위성 3호 버스시스템을 모델로 하여 확장칼만필터를 이용한 자세결정 알고리즘을 개발하였다. 그리고 자이로에 바이어스가 있는 경우 및 자이로가 고장이 난 경우에 대한 결과를 시뮬레이션을 통해 필터의 성능을 검증하였다. 특히, 추정된 상태변수를 이용한 2Hz 자세제어를 동시에 수행하였다.

  • PDF

Configuration control of a magnetic levitation stage. (자기부상스테이지의 제어에 관한 연구)

  • Nam, Taek-Kun;Jeon, Jeong-Woo;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2043-2045
    • /
    • 2003
  • 본 연구에서는 자기부상 방식의 스테이지 시스템 설계 및 제작을 행하고 시스템의 제어성능평가를 하고자 한다. 본 논문에서는 제어성능의 효율성을 향상시키기 위하여 부상체(Platen)의 기계적인 모델링을 행하고 Platen의 PTP(point to point) 및 궤도추종제어가 가능한 슬라이딩 모드제어기를 제안하였다. 제안한 슬라이딩 모드제어기는 모델링 오차 및 외란에 대해서도 강인한 제어성능을 얻을 수 있으며 수치시뮬레이션을 통하여 그 유용성을 확인하였다.

  • PDF

Simulation Modeling of Range and Acceleration Measurement Instruments for Satellite Formation Flying (편대비행 위성용 거리 및 가속도 관측기 시뮬레이션 모델링)

  • Kim, Jeong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.75-83
    • /
    • 2005
  • NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission, which consists of two co-orbiting low altitude satellites, is to measure the Earth gravity field with unprecedented accuracy. Its key instruments include inter-satellite ranging systems and three-axis accelerometers. For the preliminary design and requirements analysis, extensive instrument simulation models are developed. These modeling techniques and orbit-gravity field estimation techniques are described.

A Study on Analysis Electrical Characteristics of Cable Lenght change about area Boundary of UM71C Audio Frequency Track Circuit (고속철도 AF궤도회로경계구간 케이블길이 변화에 따른 전기특성 분석연구)

  • Choi, Jae Sik;Kim, Hie Sik;Park, Ju Hun;Kim, Bum Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4849-4854
    • /
    • 2015
  • It has been often occurred for the outside components(BU, SVaC, DB) of UM71c AF track circuits to be broken down caused by some pieces of falling ice in the winter time or by infrastructure repairing equipments while facility maintenance works since 2004, opening of Kyeongbu High Speed Rail Express. In this paper, we proposed that we could move the outside components of UM71c track circuit out of wayside from present place. Then we can assure that the life time of those components would be extended. So we simulated the electrical characteristics by changing cable length using MATLAB Simulinks and we designed the compensation capacitor. Also, we obtained the same results as those of simulation by field demonstration test on site. The design specifications obtained from this field verification test could be applied in the absent section of track circuit, if only have a little more intensified research to compensate changed electrical characteristics and to redesign inner impedance of the track circuit.

Plume Density Simulation of KM Residual Thrust Using DSMC Method (DSMC 방법을 이용한 킥모터 잔류추력 Plume Density 시뮬레이션)

  • Choi, Young-In;Kim, Keun-Taek
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.27-33
    • /
    • 2014
  • 2nd stage of KSLV-I, NaRo-Ho, performs CCAM not to collide with Naro Science Satellite. At that moment, the satellite should pass through the Plume Density area which was generated by KSLV-I KM residual thrust. Therefore, it is necessary to predict Plume Density field of KM residual thrust and guarantee the safety of the trajectory of payload. In this paper, DSMC method was used to simulate Plume Density by KM residual thrust and the simulation showed that the trajectory of Naro Science Satellite was safe.

A VR-Based Integrated Simulation for the Remote Operation Technology Development of Unmanned-Vehicles in PRT System (자동 운전 PRT 차량의 무선 관제 기술 개발을 위한 가상 환경 기반 통합 시뮬레이터 개발)

  • Park, Pyung-Sun;Kim, Hyun-Myung;Ok, Min-Hwan;Jung, Jae-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.43-56
    • /
    • 2013
  • Personal Rapid Transit(PRT), which is one of the next generation convergence transport technology, PRT system requires operation technology for controlling diverse vehicles and dealing with a variety of abnormal driving situations on a large scale trackway structures in expected operational area more efficiently and reliably. Before developing PRT control technology, it is essential that multiple testing procedures stepwise with building small scale test-tracks and develop real unmanned-vehicles. However, it is expected that the experiments demand huge amount of time and physical cost. Thus, simulation in virtual environment is efficient to develop wireless based control technology for multiple PRT vehicles prior to building real-test environment. In this paper, we propose a VR-based integrated simulator which physics engine is applied so that it enables simulation of front-wheel-steering PRT system rather than simple rail track system. The proposed simulator is also developed that it can reflect geographical features, infrastructures and network topology of expected driving region.