• Title/Summary/Keyword: 권역하천

Search Result 201, Processing Time 0.028 seconds

GIS-based Water Pollution Analysis (GIS기반의 오폐수 분석에 관한 연구)

  • Lee, Chol-Young;Kim, Kye-Hyun;Park, Tae-Og
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.111-116
    • /
    • 2007
  • 현재 한강수계를 제외한 3대강 수계에서 수질오염총량관리제도가 의무제로써 시행되고 있다. 그러나 과학적 타당성과 외국의 성공사례들로 하여금 한강수계에 대해서도 수질오염총량제도를 의무제화 하려는 시도가 추진되고 있고 있는 실정이다. 이 제도가 한강수계에도 도입된다면, 한강권역에 포함되는 모든 지자체는 해당 유역에서 하천으로 유입되는 배출부하량을 할당받은 할당부하량 이하로 관리하여야만 정해진 유역의 목표수질을 달성할 수 있으며, 배출부하량 관리를 계획한데로 이행하지 못한 지자체는 범칙금 내지는 행정제재를 받게 된다. 따라서 체계적이고 과학적인 모니터링 및 분석 수단이 필요하다. 이 연구는 환경부 고시 한강기술지침에 의거하여 GIS를 이용하여 인천일대의 오폐수 발생부하량 및 배출부하량을 제시하고 과학적인 오염물질 삭감방안을 모색하는 것을 목적으로 진행되었다. 생활계, 산업계, 축산계, 양식계의 4 가지로 분류된 점오염원과 토지 이용 분류에 따른 비점오염원에 대한 각각의 발생부하량을 GIS를 통해 산정하고, 모든 오염원별로 처리경로를 고려하고 처리시설별, 방법별 삭감 효율을 반영하여 배출부하량을 산정하여 GIS상에서 제시하고 분석하였다. 인천일대는 인근지역에 비해 인구밀도가 높고 산업단지가 발달하여 생활계와 산업계 오염원에 의한 발생부하량 및 배출부하량이 많았으며, 특정 오염물에 대해서는 삭감 계획이 필요함을 확인할 수 있었다. 따라서 수질오염총량관리제도에 대비하고 실제 수질 개선을 위하여 본 연구의 결과를 바탕으로 수질관리를 위한 시스템의 보완 및 삭감계획의 수립에 관한 연구가 필요하다.알 수 있었다. 이상의 결과를 토대로 기존 압출추출방법과 초임계 추출 방법을 비교한 결과 $\gamma$-토코페롤의 농도가 1.3${\~}$1.6배 증가함을 확인할 수 있었다.게 상관성이 있어 앞으로 심도 있는 연구가 더욱 필요하다.qrt{F}}}{\pm}e_0$)에서 단정도실수 및 배정도실수의 역수 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 역수 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그라픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.>16$\%$>0$\%$ 순으로 좋게 평가되었다. 결론적으로 감농축액의 첨가는 당과 탄닌성분을 함유함으로써 인절미의 노화를 지연시키고 저장성을 높이는데 효과가 있는 것으로 생각된다. 또한 인절미를 제조할 때 찹쌀가루에 8$\%$의 감농축액을 첨가하는 것이 감인절미의 색, 향, 단맛, 씹힘성이 적당하고 쓴맛과 떫은맛은 약하게 느끼면서 촉촉한 정도와 부드러운 정도는 강하게 느낄수 있어서 전반적인 기호도에서 가장 적절한 방법으로 사료된다.비위생 점수가 유의적으로 높은 점수를 나타내었다. 조리종사자의 위생지식 점수와 위생관리

  • PDF

Application of two-term storage function method converted from kinematic wave method (운동파법의 변환에 의한 2항 저류함수법의 적용)

  • Kim, Chang Wan;Chegal, Sun Dong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1057-1066
    • /
    • 2019
  • The storage function method is used as a flood prediction model for four flood control offices in Korea as a method to analyze the actual rainfall-runoff relationship with non-linearity. It is essential to accurately estimate the parameters of the storage function method for accurate runoff analysis. However, the parameters of the storage function method currently in use are estimated by the empirical formula developed by the limited hydrological analysis in 2012; therefore, they are somewhat inaccurate. The kinematic wave method is a method based on physical variables of watershed and channel and is widely used for rainfall-runoff analysis. By adopting the two-term storage function method by the conversion of the kinematic wave method, parameters can be estimated based on physical variables, which can increase the accuracy of runoff calculation. In this research, the reproducibility of the kinematic wave method by the two-term storage function method was investigated. It is very easy to estimate the parameters because equivalent roughness, which is an important physical variable in watershed runoff, can be easily obtained by using land use and land cover, and the physical variable of channel runoff can be easily obtained from the basic river planning report or topographic map. In addition, this research examined the applicability of the two-term storage function method to runoff simulation of Naechon Stream, a tributary of the Hongcheon River in the Han River basin. As a result, it is considered that more accurate runoff calculation results could be obtained than the existing one-term storage function method. It is expected that the utilization of the storage function method can be increased because the parameters can be easily estimated using physical variables even in unmeasured watersheds and channels.

Analysis of Hydrological Drought Considering MSWSI and Precipitation (MSWSI와 강수인자를 고려한 수문학적 가뭄 분석)

  • Jeong, Min-Su;Lee, Chul-Hee;Lee, Joo-Heon;Hong, Il-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.668-678
    • /
    • 2017
  • In this study, the hydrological and meteorological drought index with precipitation as a major factor were calculated, and various analyses of hydrological drought were conducted. The Modified Surface Water Supply Index (MSWSI) was applied to the hydrological drought index and Standardize Precipitation Index (SPI) was used to estimate the meteorological drought index. The target area for the estimation is the dam area among MSWSI categories. The 4001 basin with 43 years data from 1975 to 2017 was analyzed for the drought occurrence status and time series plotted with the monthly SPI and MSWSI. For the dam watershed based on the precipitation that has the role of a water supply in the hydrological cycle, correlation analysis of precipitation, dam inflow, and stream flow was performed by the monthly and moving average (2~9 months), and the correlation between meteorological and hydrological index by monthly and moving average (3, 6 months) was then calculated. The result of multifaced analysis of the hydrological drought index and meteorological drought index is believed to be useful in developing water policy.

Analysis of Potential Infection Site by Highly Pathogenic Avian Influenza Using Model Patterns of Avian Influenza Outbreak Area in Republic of Korea (국내 조류인플루엔자 발생 지역의 모델 패턴을 활용한 고병원성조류인플루엔자(HPAI)의 감염가능 지역 분석)

  • EOM, Chi-Ho;PAK, Sun-Il;BAE, Sun-Hak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.2
    • /
    • pp.60-74
    • /
    • 2017
  • To facilitate prevention of highly pathogenic avian influenza (HPAI), a GIS is widely used for monitoring, investigating epidemics, managing HPAI-infected farms, and eradicating the disease. After the outbreak of foot-and-mouth disease in 2010 and 2011, the government of the Republic of Korea (ROK) established the GIS-based Korean Animal Health Integrated System (KAHIS) to avert livestock epidemics, including HPAI. However, the KAHIS is not sufficient for controlling HPAI outbreaks due to lack of responsibility in fieldwork, such as sterilization of HPAI-infected poultry farms and regions, control of infected animal movement, and implementation of an eradication strategy. An outbreak prediction model to support efficient HPAI control in the ROK is proposed here, constructed via analysis of HPAI outbreak patterns in the ROK. The results show that 82% of HPAI outbreaks occurred in Jeolla and Chungcheong Provinces. The density of poultry farms in these regions were $2.2{\pm}1.1/km^2$ and $4.2{\pm}5.6/km^2$, respectively. In addition, reared animal numbers ranged between 6,537 and 24,250 individuals in poultry farms located in HPAI outbreak regions. Following identification of poultry farms in HPAI outbreak regions, an HPAI outbreak prediction model was designed using factors such as the habitat range for migratory birds(HMB), freshwater system characteristics, and local road networks. Using these factors, poultry farms which reared 6,500-25,000 individuals were filtered and compared with number of farms actually affected by HPAI outbreaks in the ROK. The HPAI prediction model shows that 90.0% of the number of poultry farms and 54.8% of the locations of poultry farms overlapped between an actual HPAI outbreak poultry farms reported in 2014 and poultry farms estimated by HPAI outbreak prediction model in the present study. These results clearly show that the HPAI outbreak prediction model is applicable for estimating HPAI outbreak regions in ROK.

Assessment of Hydrochemistry and Irrigation Water Quality of Wicheon Watershed in the Gyeongsangbuk-do (경상북도 위천수계의 수리화학적 특성 및 관개용수 수질평가)

  • Lee, Gi-Chang;Park, Moung-Sub;Kim, Jae-Sik;Jang, Tae-Kwon;Kim, Hyo-Sun;Lee, Hwa-Sung;Son, Jin-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • BACKGROUND: Wicheon watershed has the largest irrigation area among the mid-watershed of Nakdong river. However, no investigation of irrigation water quality has been conducted on the Wicheon watershed, which evaluates the effects on the soil quality and crop cultivation. Therefore, this study aims to provide various assessments of water quality of Wicheon watershed as the scientific basic data for efficient agricultural activities. METHODS AND RESULTS: Water sampling was performed in five locations of the first tributaries of Wicheon. Wicheon watershed showed clean water quality with very low organic matters and safe water quality from metals at all points of investigation. It was estimated that the natural chemical components of Wicheon watershed were originated from water-rock interaction in Gibbs diagram. All samples were concentrated in the type of Ca-HCO3-Cl in the Piper diagram. The quality of irrigation water was evaluated with sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), and percent sodium (%Na). The values of these water quality indices were in the range of 0.37-0.67, -2.11--0.24, 41.13-84.52% and 11.28-21.84%, respectively, and were classified as good grades at all sites. CONCLUSION: The water quality of Wicheon watershed was very low in salt, indicating good irrigation water suitable for growing agricultural products. We hope that the results of this study will be used as the basic data for the cultivation of agricultural products and promotion of their excellence.

A Case Study about Counting Uncertainty of Radioactive Iodine (131I) in Public Waters by Using Gamma Spectrometry (감마분광분석을 이용한 환경 중 방사성요오드(131I)의 측정 불확도에 관한 사례 연구)

  • Cho, Yoonhae;Seol, Bitna;Min, Kyoung Ok;Kim, Wan Suk;Lee, Junbae;Lee, Soohyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.42-46
    • /
    • 2016
  • The radioactive iodine ($^{131}I$) presents in the environment through the excrete process of nuclear medicine patients. In the detecting of low level of $^{131}I$ in the public water, the counting uncertainty has an effect on the accuracy and reliability of detecting $^{131}I$ radioactivity concentration. In this study, the contribution of sample amount, radioactivity concentration and counting time to the uncertainty was investigated in the case of public water sample. Sampling points are public water and the effluents of a sewage treatment plant at Sapkyocheon stream, Geumgang river. In each point, 1, 10 and 20 L of liquid samples were collected and prepared by evaporation method. The HPGe (High Purity Germanium) detector was used to detect and analyze emitted gamma-ray from samples. The radioactivity concentration of $^{131}I$ were in the range of 0.03 to 1.8 Bq/L. The comparison of the counting uncertainty of the sample amount, 1 L sample is unable to verify the existence of the $^{131}I$ under 0.5 Bq/L radioactivity concentration. Considering the short half-life of $^{131}I$ (8.03 days), a method for measuring 1 L sample was used. However comparing the detecting and preparing time of 1, 10 L respectively, detecting 10 L sample would be an appropriate method to distinguish $^{131}I$ concentration in the public water.

An Outlook on Cereal Grains Production in South Korea Based on Crop Growth Simulation under the RCP8.5 Climate Change Scenarios (RCP8.5 기후조건의 작물생육모의에 근거한 우리나라 곡물생산 전망)

  • Kim, Dae-Jun;Kim, Soo-Ock;Moon, Kyung-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.132-141
    • /
    • 2012
  • Climate change impact assessment of cereal crop production in South Korea was performed using land attributes and daily weather data at a farm scale as inputs to crop models. Farmlands in South Korea were grouped into 68 crop-simulation zone units (CZU) based on major mountains and rivers as well as existing land use information. Daily weather data at a 1-km grid spacing under the A1B- and RCP8.5 scenarios were generated stochastically to obtain decadal mean of daily data. These data were registered to the farmland grid cells and spatially averaged to represent climate conditions in each CZU. Monthly climate data for each decade in 2001~2100 were transformed to 30 sets of daily weather data for each CZU by using a stochastic weather generator. Soil data and crop management information for 68 CZU were used as inputs to the CERES-rice, CERE-barley and CROPGRO-soybean models calibrated to represent the genetic features of major domestic cultivars in South Korea. Results from the models suggested that the heading or flowering of rice, winter barley and soybean could be accelerated in the future. The grain-fill period of winter barley could be extended, resulting in much higher yield of winter barley in most CZUs than that of rice. Among the three major cereal grain crops in Korea, rice seems most vulnerable to negative impact of climate change, while little impact of climate change is expected on soybeans. Because a positive effect of climate change is projected for winter barley, policy in agricultural production should pay more attention to facilitate winter barley production as an adaptation strategy for the national food security.

Introduction of Kjeldahl Digestion Method for Nitrogen Stable Isotope Analysis (δ15N-NO3 and δ15NNH4) and Case Study for Tracing Nitrogen Source (Kjeldahl 증류법을 활용한 질산성-질소 및 암모니아성-질소 안정동위원소비 분석 및 질소오염원 추적 사례 연구)

  • Kim, Min-Seob;Park, Tae-Jin;Yoon, Suk-Hee;Lim, Bo-La;Shin, Kyung-Hoon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values of IAEA-NO-3 and IAEA-N-1 were $4.7{\pm}0.2$‰ and $0.4{\pm}0.3$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ in effluent plumes from a waste water treatment plant in Han River, Korea. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.

Evaluation of Ecological quality and establishment of ecological restoration guideline in landscape level of Mt. Moodeung National Park (무등산국립공원의 생태적 질 평가 및 복원 가이드라인 수립)

  • Lim, Chi Hong;Park, Yong Su;An, Ji Hong;Jung, Song Hie;Nam, Kyeong Bae;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.296-307
    • /
    • 2016
  • Ecological restoration is an eco-technology, which heals the nature damaged by human activity by imitating organization and function of the integrate nature and thereby provide an inhabitable space for diverse organisms. Such an ecological restoration has to be carried out by applying restoration plan prepared based on the results of diagnostic evaluation discussed in the diversified respects. This study aims to prepare an ecological restoration plan of the damaged forest ecosystem in Mt. Moodeung National Park. To arrive at the goal, first of all, we diagnosed quality of forest landscape established in Mt. Moodeung National Park based on natural (topography, climate, and distribution of vegetation) and artificial (land use, linear landscape element) factors. In addition, we evaluated the integrity of each zone divided by linear landscape element quantitatively based on geometric property and land use intensity. As the result of analysis, topography of Mt. Moodeung National Park tended to be depended on weathering property of parent rock and vegetation zones were divided to three vegetation zones. Based on land use pattern, deciduous broad-leaved forest, evergreen needle-leaved forest, and mixed forest occupied about 90% of Mt. Moodeung National Park. Mean score of forest landscape quality was shown in $69.86{\pm}11.41$. As a result, forest landscape elements in Mt. Moodeung National Park were influenced greatly by human activity and the degree was depended on topographic condition. This study suggested the synthetic restoration plan to improve ecological quality of Mt. Moodeung National Park based on the results of diagnostic evaluation.

An Analysis on the Usability of Unmanned Aerial Vehicle(UAV) Image to Identify Water Quality Characteristics in Agricultural Streams (농업지역 소하천의 수질 특성 파악을 위한 UAV 영상 활용 가능성 분석)

  • Kim, Seoung-Hyeon;Moon, Byung-Hyun;Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.10-20
    • /
    • 2019
  • Irregular rainfall caused by climate change, in combination with non-point pollution, can cause water systems worldwide to suffer from frequent eutrophication and algal blooms. This type of water pollution is more common in agricultural prone to water system inflow of non-point pollution. Therefore, in this study, the correlation between Unmanned Aerial Vehicle(UAV) multi-spectral images and total phosphorus, total nitrogen, and chlorophyll-a with indirect association of algal blooms, was analyzed to identify the usability of UAV image to identify water quality characteristics in agricultural streams. The analysis the vegetation index Normalized Differences Index (NDVI), the Normalized Differences Red Edge(NDRE), and the Chlorophyll Index Red Edge(CIRE) for the detection of multi-spectral images and algal blooms collected from the target regions Yang cheon and Hamyang Wicheon. The analysis of the correlation between image values and water quality analysis values for the water sampling points, total phosphorus at a significance level of 0.05 was correlated with the CIRE(0.66), and chlorophyll-a showed correlation with Blue(-0.67), Green(-0.66), NDVI(0.75), NDRE (0.67), CIRE(0.74). Total nitrogen was correlated with the Red(-0.64), Red edge (-0.64) and Near-Infrared Ray(NIR)(-0.72) wavelength at the significance level of 0.05. The results of this study confirmed a significant correlations between multi-spectral images collected through UAV and the factors responsible for water pollution, In the case of the vegetation index used for the detection of algal bloom, the possibility of identification of not only chlorophyll-a but also total phosphorus was confirmed. This data will be used as a meaningful data for counterplan such as selecting non-point pollution apprehensive area in agricultural area.