• Title/Summary/Keyword: 굽힘 붕괴

Search Result 32, Processing Time 0.021 seconds

Bending Performances and Collapse Mechanisms of Light-weight Aluminum-GERP Hybrid Square Tube Beams (경량화 알루미늄-GFRP 혼성 사각관 보의 굽힘성능 및 붕괴 메커니즘)

  • Lee, Sung-Hyuk;Kim, Hyung-Jin;Chang, Young-Wook;Choi, Nak-Sam
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.8-16
    • /
    • 2007
  • Bending collapse of light-weight square tubes used for vehicle structure components is a dominant failure mode in oblique collision and rollover of vehicles. In this paper bending performances of aluminum-GFRP hybrid tube beams were evaluated in relation with bending deformation behavior and energy absorption characteristics. Aluminum/GFRP hybrid tube beams fabricated by inserting adhesive film between prepreg and metal layer were used in the bending test. Failure mechanisms of hybrid tubes under a bending load were experimentally investigated to analyze the bending performance as a function of ply orientation and composite layer thickness. Ultimate bending moments and energy absorption capacity of hybrid tube beams were obtained from the measured load-displacement corves. It was found that aluminum/GFRP hybrid tubes could be converted to rather stable collapse mode showing excellent energy absorption capacity in comparison to the pure aluminum tube beams. In particular, the hybrid tube beam with $[0^{\circ}/90^{\circ}]s$ composite layer showed a large improvement by about 78% in energy absorption capacity and by 29% in specific energy absorption.

Development of a Pure Bending Test Machine and Bending Collapse Characteristics of Rectangular Tubes (순수굽힘 시험기개발 및 사각관부재의 굽힘붕괴특성 연구)

  • 강신유;장인배;김헌영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.222-233
    • /
    • 1998
  • A 4-point pure bending res machine is developed the evaluate the pure vending moment-rotation properties of the thin-walled tubes without imposing shear and tensile forces. The moment-rotation properties of the thin-walled tubes are measured up to and beyond collapse with the pure bending test machine. The test results are compared with those of finite element analyses and existing analytical solution.

  • PDF

A Study on the Bending Collapse at the Open Cross-Section Members with Experiment and Analysis (열린 단면 부재의 굽힘 붕괴 실험 및 해석에 관한 연구)

  • 이승철;강신유
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.132-139
    • /
    • 2004
  • The open section members have been used as the members of vehicle such as automotives, airplanes and trains. When vehicles are crashed, these members have absorption of the energy and it is necessary for retainment of the survival space, and as the result, the prediction for the displacement of members in this case of the crash of vehicles is very important. The displacements of members in this case of the crash of automotives show combined aspect of both axial collapse and bending collapse. In the rollover accident when bending collapse happen, the collapse of each members is progressed by the plastic hinge which made from bending moment, and therefore the research for the behavior of members under bending moment after collapse is necessary to determine the internal energy which the members can absorb and the deformed shapes of the members on the step of design. In this paper, the characteristics of bending collapse at the members of the open cross-section were studied with experiment and numerical analysis. We made a comparative studied of the result of the experiment, and changed the axis according to the parallel-axis theorem.

An Experimental Study on Deep Collapse of Steel Tubes under Pure Bending (순수 굽힘 시험기를 이용한 연강 사각관의 굽힘 붕괴에 관한 실험적 연구)

  • KiM, C.S.;Chung, T.E.;Kang, S.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper the bending collapse characteristics of square and rectangular steel tubes were studied with the pure bending test machine which apply pure bending moment without imposing shear and tensile forces. Under pure bending moment, delayed buckling modes occur and depend on test length and shape of section. For delayed mode, the endrgy of bending moment is absorbed by strain hardening energy. The pre- dictions of maximum moment and moment-rotation angle curve from those concepts are in good agreement with experimental observations.

  • PDF

A Study on the Evaluation Method for Bending Collapse Behavior of an Aluminum Square Tube (굽힘붕괴를 수반하는 알루미늄 사각관의 시험법에 관한 연구)

  • 이성혁;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.123-126
    • /
    • 2002
  • To evaluate the bending collapse behavior of an aluminum square tube, a finite element simulation for the four-point bending test was suggested. Local buckling deformation near the center of an aluminum tube specimen was induced which has been partly inserted by two steel bars. Simulation results showed good agreements with those of experiment.

  • PDF

船殼거더의 最終崩壞强度 解析法 및 簡易計算式에 관한 硏究 動向

  • 백점기
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.50-54
    • /
    • 1995
  • 선박의 구조설계단계에서 최종붕괴강도를 설계기준으로 삼는 경우는 거의 없으나 최근에 각국 선급에서 최종붕괴강도를 의무적인 설계기준으로 삼기 위해 자체적인 해석법과 설계식을 제시 하고 규정화하는 작업을 진행시키고 있다. [12, 17, 31, 32]. 1994년 ISSC [1]에서도 토론된바와 같이 특히 새로운 구조방식을 가진 선박의 합리적인 구조설계를 위하여는 해상플렛폼의 구조설 계시와 마찬가지로 삼아야 할 것이다. 본고에서는 선각거더의 최종붕괴강도에 대한 해석법과 간이계산식에 관한 연구동향을 문헌조사를 통하여 분석하였다. 그 결과 순수굽힘모멘트가 작용 하는 문제의 경우 최종붕괴강도 해석법은 어느정도 확립되었다고 판단되지만 최종붕괴강도의 간이계산식은 아직도 정도 등의 면에서 개선의 여지가 남아 있다고 생각된다. 앞으로 순수 굽 힘모멘트뿐만아니라 조합하중을 받는 경우와 피로균열을 비롯한 초기구조손상을 가진 노후화된 선박에 대한 최종붕괴강도를 보다 정밀하게 해석하기 위한 해석법의 개발과 간이계산식의 도 출이 필요하다고 사료된다. 또한, 충돌, 좌초, 폭발 등에 기인된 선각거더의 붕괴강도 평가를 위한 해석법의 개발도 앞으로 남은 과제중의 하나이다.

  • PDF

Center Pillar Design for High Bending Collapse Performance (굽힘 붕괴 성능 향상을 위한 센터 필라 설계)

  • Kang, Sungjong;Park, Myeongjae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.128-134
    • /
    • 2013
  • High bending collapse performance (maximum resistance force and mean resistance force) of body center pillar is an important design target for vehicle safety against side impact. In this study, effect of the upper section shape and the thickness of outer reinforcement on bending collapse performance was investigated for the center pillar of a large passenger car. First, through bending collapse analyses using simple models with uniform section, an optimized center pillar upper section was chosen. Next, bending collapse performance for various models of the actual center pillar with changing the thickness of outer reinforcement were analyzed. The finally designed model showed distinctive enhancement in bending collapse performance nearly without weight increase.

A Study on the Local Buckling Collapse Behavior of an Aluminum Square Tube Beam under a Bending Load (굽힘하중을 받는 알루미늄 사각관 보의 국부적 좌굴붕괴 거동에 관한 연구)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2011-2018
    • /
    • 2003
  • To analyze the bending collapse behavior of an aluminum square tube beam under a bending load, a finite element simulation for the four-point bending test has been performed. Using an aluminum tube beam specimen partly inserted with two steel bars, the local buckling deformation near the center of the tube beam was induced. The maximum bending load and the bending collapse behavior obtained from the numerical simulation were in good agreement with experimental results. Using a combination of the four-point bending test and its finite element simulation, analysis of the local buckling and the accompanied bending collapse behavior of aluminum tube beam could be quantitative accomplished.

Effect of Bend Angle on the Collapse Behavior of Locally Wall Thinned Pipe Bends (감육 곡관의 붕괴거동에 미치는 곡관 굽힘각의 영향)

  • Na Man-Gyun;Kim Jin-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1269-1275
    • /
    • 2006
  • The purpose of this study is to investigate the effect of bend angle on the collapse behavior of locally wall thinned pipe bends. For this purpose, the present study performed three-dimensional finite element analysis on the 30-, 60-, and 90-degree pipe bends with local wall thinning at the center of intrados, extrados, and crown, and evaluated the collapse moment for different thinning dimensions under closing- and opening-mode bending with a constant internal pressure. The results showed that, for intrados and extrados wall thinning, the reduction in the collapse moment due to local wall thinning became significant with decreasing bend angle of pipe bends. This effect of bend angle was enhanced with increasing thinning dimensions, and it was clearer fur opening-mode bending than for closing-mode bending. For crown wall thinning, however, the effect of bend angle was unclear and was less sensitive to the change of wall thinning shapes.