• Title/Summary/Keyword: 굽힘변위

Search Result 104, Processing Time 0.02 seconds

Calculation of J-Integral by CMOD at Impact Behavior of 3-Point Bend Specimen (삼점 굽힘 시험편의 충격 거동에 있어서의 CMOD에 의한 J-적분의 계산)

  • Cho Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.542-546
    • /
    • 2005
  • The J-integral used as a ductile crack initiation criterion has been discussed for the impact loaded elastic-plastic 3PB specimens. The experimental method to measure or estimate the J-integral history has been investigated and its result has been compared to the obtained elastic-plastic values by the finite element model of this study. These numerical results and the experimental curves are found to agree closely. J-integral can be calculated by only numerical analysis with the finite element model. It is proved that simple calculation can be made in order to find the possible value of J-integral by crack mouth opening displacement(CMOD) in the dynamic nonlinear fracture experiment of 3-point bend(3PB) specimen. The property of elastic-plastic material is considered at different impact velocities. The J-integral may be estimated from the crack mouth opening displacement which can be measured directly kom photographs taken during impact experiments.

  • PDF

Bending Fatigue Characteristics of Surface-Antenna-Structure (복합재료 표면안테나 구조의 굽힘 피로특성 연구)

  • Kim D. H;Hwang W;Park H. C;Park W. S
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.22-27
    • /
    • 2004
  • The objective of this work is to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that is asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials are selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSSFIP elements inserted into structural layers were designed fur satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was $16{\;}{\tiems}{\;}8$ array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75 (1.875kN) load level, Experimental results were compared with single load level fatigue life prediction equations (SFLPE) and in good agreement with SFLPE. SAS concept is the first serious attempt at integration fur both antenna and composite engineers and promises innovative future communication technology.

Displacement Prediction of Swept Composite Cantilevered Panel Wings Using Strains (변형률을 이용한 복합재 평판 후퇴익 구조물의 변위 예측)

  • Kim, Mun-Guk;You, Je-Gyun;Kim, So-Young;Kim, In-Gul;Kim, Geun-Sang;Jeon, Min-Hyeok
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.280-287
    • /
    • 2017
  • The complex deformation of the swept composite wing occurs due to the torsional load and bending load during the flight. Therefore, prediction for displacement of swept composite wing is required for structural health monitoring. Wing displacements can be predicted by using relationship between displacements and strains. The strain distributions on the fixed-end are complex due to the geometric shape of the swept wing. Because of those strain distribution, the wing displacement can be diversely predicted by the strain sensing locations. In this paper, displacements prediction of swept composite wing was performed by considering complex strain distributions. The predicted displacements under various loading condition were consistent with those calculated by FEA and verified through the bending test.

The Effects of Leading Edge Flap Deflection on Supersonic Cruise Performance of a Fighter Class Aircraft (전투기급 항공기 초음속 순항 성능에 미치는 앞전플랩 변위 효과)

  • Chung, In-Jae;Kim, Sang-Jin;Kim, Myung-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.899-904
    • /
    • 2007
  • During the conceptual design phase of fighter class aircraft, the high speed wind tunnel test with 1/20 scale wing-body-tail model has been conducted to investigate the effects of leading edge flap deflection on the supersonic cruise performance of the aircraft. To select the proper leading edge flap deflection for the wind tunnel test, the aerodynamic characteristics due to various leading edge flap deflections have been analyzed by using corrected supersonic panel method. Based on the results obtained from the experimental and numerical approaches, the effects of leading edge flap deflection have shown to be useful to enhance the supersonic cruise performance of fighter class aircraft.

Foam Filling Effect on Bending Collapse Characteristics for Member Section Type (부재단면 형상에 따른 부재 굽힘붕괴 특성의 폼 충진 효과)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.41-49
    • /
    • 2007
  • More diversified and strengthened safety regulations require higher safety vehicle with less weight. The structural foam can play a role for restraining section distortion of main body members undergoing bending collapse at vehicle crash. In this study, using structural foam modeling technology, validated in previous work, the bending collapse characteristics were evaluated for two types of circular and actual vehicle body frame sections. With changing the foam filling method, outer panel thickness and section shape, load carrying capability and absorbed energy were observed. The results indicate valuable design strategy for effectively elevating bending collapse performance of body members with foam filled.

Effect of Restraint of Pressure Induced Bending on Crack Opening for Circumferential Crack (원주방향 균열의 균열열림에 미치는 압력유기굽힘의 구속 효과)

  • Kim, Jin-Weon;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.849-855
    • /
    • 2000
  • This study evaluated the effect of restraint of pressure induced bending(PIB) on crack mouth opening displacement(CMOD) for circumferential through-wall crack in pipe by using both elastic and elastic-plastic finite element analyses. The analyses results showed the restraint of PIB was decreased crack opening for a given crack length and tensile stress, and the effect was considerable for large crack and short restraint length. Also, the restraint effect on CMOD was independent on the variation in pipe diameter and decreased with increasing pipe thickness, and it depended on not total restraint length but short restraint length for non-symmetrically restrained. Additionally, the effect of restraint of PIB was more significant in the elastic-plastic analysis results compared with in the elastic analysis results.

  • PDF

Bending Collapse Characteristics of Hat Section Beam Filled with Structural Foam (폼 충진 모자단면 빔의 굽힘붕괴 특성)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.92-99
    • /
    • 2006
  • Design capability for high safety vehicle with light weight is crucial to enhancing competitive power in vehicle market. The structural foam can contribute to restraining section distortion in body members undergoing bending collapse at vehicle crash. In this study, first, the validation of analysis model including structural foam model for simulating fracture behavior was discussed, and the bending collapse characteristics of five representative section types were analyzed and compared. Next, with changing the laminate foam shape, load carrying capability and absorbed energy were observed. The results suggests a design strategy of body members filled with laminate foam, leading to effectively elevating bending collapse characteristics with weight increase in the minimum.

Developing General Beam Finite Elements with Warping Displacement (뒤틀림 변위를 고려한 일반 빔 유한요소의 개발)

  • Yoon, Kyung-Ho;Lee, Phill-Seung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.764-767
    • /
    • 2011
  • 본 논문에서는 유한요소법을 이용하여 임의의 단면을 가지는 빔의 비틀림 문제를 해석 할 수 있는 방법론을 제시하였다. 빔 유한요소에서 연속적인 뒤틀림함수를 얻기 위해 각 절점에서 뒤틀림자유도를 정의한 후 빔의 길이 방향으로 보간하였다. 이러한 방법의 사용은 뒤틀림구속효과와 비선형문제에 쉽게 접근 할 수 있게 한다. 또한, 임의의 단면에 대한 뒤틀림함수는 각 단면에서 St.Venant 방정식을 유한요소법을 통해 수치적으로 계산된다. 단면에서 계산된 해는 3차원 일반 빔 요소의 변위장에 매핑된다. 위와 같은 절차를 통해 개발된 빔 유한요소를 사용하면 임의의 단면을 가진 빔 구조물을 자유/구속 뒤틀림조건에서 비틀림, 굽힘, 신축 변형이 복합적으로 고려하여 해석해 낼 수 있다. 이렇게 해석된 결과를 검증하기 위하여 사각단면과 L단면에서의 결과 값을 고찰하였다.

  • PDF

탄소섬유 강화 복합재료를 이용한 증기발생기용 노즐댐 설계

  • 박진석;김태룡;오제훈;이대길
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.253-258
    • /
    • 1996
  • 원자로의 가동 중지 중이나 재장전시 원자로가 설치되어 있는 수조의 냉각수가 증기발생기 안으로 유입되는 것을 막는 장비로써 노즐댐을 사용한다. 현재의 노즐댐은 알루미늄 재질로 그 무게가 무거워 노즐댐 작업자가 취급하기 어렵다. 이 노즐댐의 경량화와 동시에 구조적 강도를 증가시키기 위해서 비강성이 높은 탄소섬유 강화 복합재료와 굽힘 강성 및 전단강성을 증가시키기 위하여 벌집구조(honeycomb)의 알루미늄을 사용하여 KAERI 노즐댐-II를 설계하였다. 노즐댐에 발생하는 응력 해석을 통하여 중앙판과 측면판의 변위가 충분히 작은 값을 가지면서 파괴지수도 충분히 작은 값이 되는 탄소섬유의 적층각도를 구하였으며, 중앙판은 [$\pm$15]로 적층하고 측면판은 [$\pm$45 ]로 적층 하였다. 그리고 각 판의 최대 파괴지수는 중앙판의 경우 0.32, 측면판의 경우 0.27 이었고 최대변위는 각각 3.1mm, 2.7mm로 노즐댐을 사용할 때 예상되는 하중에 대하여 노즐댐의 구조적 건전성을 입증하였다.

  • PDF

Dynamic Qualification of Fuel Assembly for Earthquake and Pipe Break (지진 및 배관파단에 대한 핵연료집합체의 동적 검증)

  • 정명조;박윤원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.51-62
    • /
    • 2000
  • 핵연료집합체 검증 프로그램의 일환으로 본 연구에서는 지진과 배과파단이 핵연료집합체의 건선성에 미치는 영향을 검토하였다 원자로 노심의 상세 동적해석을 이용하여 지진 및 배과파단시 핵연료 집합체에 발생하는 전단력 굽힘 모우멘트 및 변위를 계산하였고 또한 집합체를 지지하고 있는 지지격자체의 충격력을 검토하였다 이들 하중에 대한 핵연료집합체의 응력해석을 수행하여 사고조건하에서의 구조적 건전성에 대하여 언급하였고 추후 설계시 고려할 사항을 제시하였다.

  • PDF