• Title/Summary/Keyword: 굴착토사

Search Result 103, Processing Time 0.022 seconds

Experimental Study for Confirmation of Relaxation Zone in the Underground Cavity Expansion (지중 내 공동 확장에 따른 이완영역 확인을 위한 실험적 연구)

  • Kim, Youngho;Kim, Hoyeon;Kim, Yeonsam;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.231-240
    • /
    • 2017
  • Recently, there have been frequent occurrences of ground sink in the urban area, which have resulted in human and material damage and are accompanied by economic losses. This is caused by artificial factors such as soil loss, poor compaction, horizontal excavation due to the breakage of the aged sewage pipe, and lack of water proof at vertical excavation. The ground sink can be prevented by preliminary restoration and reinforcement through exploration, but it can be considered that it is not suitable for urgent restoration by the existing method. In this study, a model experiment was carried out to simulate the in-ground cavities caused by groundwater flow for developing non-excavation urgent restoration in underground cavity and the range of the relaxation zone was estimated by detecting the around the cavity using a relaxation zone detector. In addition, disturbance region and relaxation region were separated by injecting gypsum into cavity formed in simulated ground. The shape of the underground cavity due to the groundwater flow was similar to that of the failure mode III formed in the dense relative density ground due to water pipe breakage in the previous study. It was confirmed that the relaxed region detected using the relaxation zone detector is formed in an arch shape in the cavity top. The length ratio of the relaxation region to the disturbance region in the upper part of the cavity center is 2: 1, and it can be distinguished by the difference in the decrease of the shear resistance against the external force. In other words, it was confirmed that the secondary damage should not occur in consideration of the expandability of the material used as the injecting material in the pre-repair and reinforcement, and various ground deformation states will be additionally performed through additional experiments.

Dynamic Characteristics of Liquidity Filling Materials Mixed with Reclaimed Ash (매립석탄회를 혼합한 유동성 충진재의 동적거동특성)

  • Chae, Deokho;Kim, Kyoungo;Shin, Hyunyoung;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 2014
  • Recently, there have been various lifeline installations constructed in the underground space of urban area due to the effective use of land. For newly installed lifelines or the management of the installed lifelines, many construction activities of excavation and backfilling are observed. Around these area, there are possibilities of collapse or excessive settlement due to the leaking of the pipe or unsatisfactory compaction of backfill material. Besides, construction costs can be saved since the on-site soils are used. The application of this liquidity filling material is not only to the lifeline installation but also to underpin the foundation under the vibrating machinery. On the evaluation of the applicability of this method to this circumstance, the strength should be investigated against the static load from the machine load as well as the vibration load from the activation of the machine. In this study, the applicability of the liquidity fill material on the foundation under the vibrating machinery is assessed via uniaxial compression and resonant column tests. The liquidity filling material consisting of the on-site soils with loess and kaolinite are tested to investigate the static and dynamic characteristics. Furthermore, the applicability of the reclaimed ash categorized as an industrial waste is evaluated for the recycle of the waste to the construction materials. The experimental results show that the shear modulus and 7 day uniaxial strength of the liquidity filling material mixed with reclaimed ash show higher than those with the on-site soils. However, the damping ratio does not show any tendency on the mixed materials.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.