• Title/Summary/Keyword: 굴착시스템

Search Result 249, Processing Time 0.021 seconds

Current Status of Rock Cutting Technique Using Undercutting Concept (언더커팅 개념을 적용한 암반절삭기술의 현황 분석)

  • Jeong, Hoyoung;Choi, Seungbeom;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.148-156
    • /
    • 2019
  • In urban area, the use of mechanical excavators (e.g., TBM and roadheader) has been increasing in construction of tunnelling and underground space. The undercutting technology, which is modified from the conventional rock-cutting concept, has been developed by advanced countries. Therefore, research on the latest technology of mechanical excavation is required, and keeping carrying out research on conventional mechanical tunneling methods at the same time. In this study, as a fundamental study of the undercutting technique, the principle and concept of the undercutting were introduced, as well as the current status of the research of advanced countries. The undercutting is applicable as a full-face excavation method for the tunnels and underground spaces, as well as an auxiliary(partial-face excavation) method for extension of the existing tunnels.

Application of a Hydraulic Rock Splitting System to Bench-Cut Field Experiments (수압암반절개시스템을 이용한 벤치컷 현장 적용 사례 연구)

  • Park, Jong Oh;Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.725-733
    • /
    • 2022
  • This study applied a hydraulic rock splitting system equipped with a hybrid packer to the bench-cut method. The hybrid packer system is an improvement of the packer developed in previous studies; it is designed efficiently to reduce vibration and noise during rock excavation by combining the two functions of inducing hydraulic fractures using injection pressure and then expanding and extending them using a rubber packer. Field experiments assessed the efficiency of rock excavation with respect to the injection conditions; the adjusted experimental conditions included the distance from the free surface and the test holes drilled at the top of the slope and the injection settings. Using a separation of 5 m left some unexcavated parts, but using a separation of 1 m left no unexcavated parts. The hydraulic fractures generated by the injection pressure developed generally parallel to the free surface and expanded and extended as the rubber packer expanded, thus facilitating bench-cut excavation. For hydraulic rock splitting to be broadly applicable to bench-cut rock excavation, it is important to accumulate results from many field experiments conducted under varying experimental conditions for various types of rockmass.

Predicting ground condition ahead of tunnel face utilizing electrical resistivity applicable to shield TBM (Shield TBM에 적용 가능한 전기비저항 기반 터널 굴착면 전방 예측기술)

  • Park, Jin-Ho;Lee, Kang-Hyun;Shin, Young-Jin;Kim, Jae-Young;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.599-614
    • /
    • 2014
  • When tunnelling with TBM (Tunnel Boring Machine), accessibility to tunnel face is very limited because tunnel face is mostly occupied by a bunch of machines. Existing techniques that can predict ground condition ahead of TBM tunnel are extremely limited. In this study, the TBM Resistivity Prediction (TRP) system has been developed for predicting anomalous zone ahead of tunnel face utilizing electrical resistivity. The applicability and prediction accuracy of the developed system has been verified by performing field tests at subway tunnel construction site in which an EPB (Earth Pressure Balanced) shield TBM was used for tunnelling work. The TRP system is able to predicts the location, thickness and electrical properties of anomalous zone by performing inverse analysis using measured resistivity of the ground. To make field tests possible, an apparatus was devised to attach electrode to tunnel face through the chamber. The electrode can be advanced from the chamber to the tunnel face to fully touch the ground in front of the tunnel face. In the 1st field test, none of the anomalous zone was predicted, because the rock around the tunnel face has the same resistivity and permittivity with the rock ahead of tunnel face. In the 2nd field test, 5 m thick anomalous zone was predicted with lower permittivity than that of the rock around the tunnel face. The test results match well with the ground condition predicted, respectively, from geophysical exploration, or directly obtained either from drilling boreholes or from daily observed muck condition.

Oversea & Domestic Case Studies on Excavation Damaged Zone for Deep Geological Repository for Spent Nuclear Fuel (사용후핵연료 심층 처분장을 위한 국내외 굴착손상영역 사례연구)

  • Jeonghwan Yoon;Ki-Bok Min;Sangki Kwon;Myung Kyu Song;Sean Seungwon Lee;Tae Young Ko;Hoyoung Jeong;Youngjin Shin;Jaehoon Jung;Juhyi Yim
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.15-27
    • /
    • 2024
  • In this case study, detailed survey of the Excavation Damaged Zone (EDZ) evaluation for the deep geological repository for high level nuclear waste was conducted. Oversea and Domestic case studies were compiled and investigated. EDZ is considered a crucial factor in the performance assessment of spent fuel disposal, leading to numerous studies worldwide aiming to understand the characteristics of the EDZ and quantitatively assessment of its extent through field and laboratory tests at Underground Research Laboratory (URL) sites. To enhance the understanding of EDZ, this study begins with defining and exploring the history of EDZ, compiling factors influencing EDZ, and summarizing the impacts caused by EDZ. Subsequently, an analysis of EDZ and rock properties is performed, followed by presenting generalized outcomes, limitations drawn from previous research, and proposing future research directions.

Technological Development Trends for Underground Safety in Urban Construction (도심지 공사시 지하안전 확보를 위한 기술개발 동향)

  • Baek, Yong;Kim, Woo Seok
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.343-350
    • /
    • 2017
  • Amid increasingly saturated ground space, development of underground space has been booming throughout the world and excavation has been underway near the structure above or under the ground level. But the ground subsidence caused by improper or poor construction technologies, underground water leakage, sudden changes of stratum and the problem with earth retaining system component has been emerged as hot social issue. To deal with such problems nationwide, establishment of preventive and proactive disaster management and rapid restoration system has been pushed now. In this study, collection of the data on technology development trend to secure the underground safety was made, taking into account of internal change elements (changing groundwater level, damage to underground utilities, etc) and external change elements (vehicle load, earthquake and ground excavation, etc) during excavation. Amid the growing need of ground behavior analysis, ground subsidence evaluation technology, safe excavation to prevent ground subsidence and reinforcement technology, improvement of rapid restoration technology in preparation for ground subsidence and development of independent capability, this study is intended to introduce the technology development in a bid to prevent the ground subsidence during excavation. It's categorized into prediction/evaluation technology, complex detect technology, waterproof reinforcement technology, rapid restoration technology and excavation technology which, in part, has been in process now.

Stability of Tunnel under Shallow Overburden and Poor Rock Conditions Using Numerical Simulations (수치해석적 방법을 통한 저토피 및 암질불량구간의 터널 안정성 검토)

  • Kim, Jungkuk;Kim, Heesu;Ban, Hoki;Kim, Donggyou
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.39-47
    • /
    • 2021
  • Tunneling is widely increased in rail-road construction due to the large portion of mountainous regions in Korea as well as the improving running performance of train. Tunneling under poor rock condition, shallow overburden, or existing fault zone has high risk for collapse. Therefore, this study presents the stability of tunnel under unfavorable geological conditions using finite element methods.

Design of Building Excavation Plane in Innovative Prestressed Scaffolding(IPS) System (혁신적 프리스트레스트 가시설 구조시스템(IPS)을 적용한 굴착면의 해석 및 설계)

  • Kim, Sung-Bo;Han, Man-Yop;Kim, Moon-Young;Jung, Kyoung-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.163-171
    • /
    • 2006
  • The behaviors and design procedures of building excavation plane in innovative prestressed support (IPS) system are presented in this paper. Determination procedure for initial pretension in IPS wale subjected to design earth pressure is derived. The computer analysis model under uniform and non-uniform earth pressure is constructed using beam element for the IPS wale, tension-only element for cable, and compression-only element for soil. Axial forces and bending moments of IPS wale under initial pretension and design earth pressure are calculated. The combined stresses due to these axial force and bending moment are calculated and safety condition of building excavation plane is investigated.

A Study on Development and Application of New Borehole Roughness and Verticality Measurement System (BKS-LRFS) for Drilled Shafts (현장타설말뚝의 굴착공 벽면거칠기 및 연직도 측정 시스템(BKS-LRPS)의 개발 및 적용성에 관한 연구)

  • Park, Bong-Geun;Nam, Moon-S.;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.55-68
    • /
    • 2009
  • A new borehole roughness and verticality measurement system (BKS-LRPS) for rock socketed drilled shafts were developed and verified its field application. The stability of BKS-LRPS was verified for several field conditions, which included the effect of measuring unit shaking, the application of water/air calibration factors, and the resistance of high water pressure inside piles. Also, effective measurement distances for various conditions of turbidity were defined in the field by measuring borehole roughness and vertical alignment for 6 drilled shafts. Vertical alignments for all drilled shafts could be measured by BKS-LRPS. However, borehole roughness was not able to be measured due to high turbidity caused by RCD drilling processing. Based on the BKS-LRPS field verification, BKS-LRPS is the first borehole roughness and verticality measurement system applying both in the water and air.

In-Situ Evaluation Technique for Hydraulic Conductivity in Excavation Disturbed Zone (EDZ) (굴착영향영역(EDZ) 투수특성의 실험적 평가기술)

  • Kim, Hyung-Mok;Ryu, Dong-Woo;Synn, Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.91-97
    • /
    • 2008
  • In this paper, in-situ technique for measuring hydraulic conductivity of Excavation Disturbed Zone (EDZ) in a direct way and its application to an Underground Research Laboratory (URL) site were introduced. It was understood that both the EDZ oriented test equipment as a hardware and analysis/evaluation technique as a software should be integrated for upgrading a quality of estimated EDZ hydraulic conductivity. The well-estimated EDZ hydraulic conductivity is expected to enhance a reliability of stability evaluation for caverns under groundwater table and design of a waterproof or drainage system as well as a grout system.

A Study on Notch Bit System for Controlling Blast Vibration and Over-break in Rock Mass (발파공해 해소 및 여굴 최소화를 위한 선균열 암굴착 노치장비 개발에 관한 연구)

  • Jeong, Dong-Ho;Moon, Sang-Jo;An, Dae-Jin;Jeong, Won-Joon;Kim, Eun-Kwan;Kim, Dong-Gyou
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.216-224
    • /
    • 2007
  • Blasting, using shock and dynamic energy of explosive, is very effective tunnel excavation method. But it had serious problem which is the blast vibration and over-break. In recent study, pre-cracked excavation method using notch hole reduced blast vibration and over-break in tunnel, so we performed study about developing notch bit system for making notch hole. In order to make notch hole effectively we had perform drilling experiments changing length and height of notch and in order to improve speed and precision of drilling we had developed notch bit system which consists of drilling bit, notch bit, adapter and notch guide.